GODDARD SPACE FLIGHT CENTER

g n67 81230

THRU)
| %
L. (conx)
: CATEGORY)

COMPUTER PROGRAMMER’S MANUAL

 GODDARD SPACE FLIGHT CENTER

COMPUTER PROGRAMMER'S MANUAL

"7 September 1965

Prepared for
DATA SYSTEMS DIVISION
under Contracﬁ)ﬁASS-9817 -
by

/SYSTEM DEVELOPMENT CORPORATION /+:i-

. 25 February 1966 i

FOREWORD

The Programmer's Manual applies to all users of the Data
Systems Division electronic data processing equipment of
the Goddard Space Flight Center, Greenbelt, Maryland.
It is recognized that changes to this manual will be
' necessary as operational experience is gained and oper-
ational computer programs are revised. Recommendations
for revision and/or changes are encouraged and will be
submitted to the Data Systems Division.

Initial distribution of this menual and change pages will
be made in accordance with established distribution lists.
Proposed or recommended revisions and/or changes will not
be implemented until such changes are published by the
Data Systems Division. Changes will be issued as replace-
ment pages. :

The technical material contained in the Programmer's Manual
was in large part derived from documents authored by IBM

and UNIVAC and from the Programming Methods Section and the
Advanced Orbit Programming Branch of the Data Systems Division.

25 February 1966 ii

CONTENTS

Paragraph Page
CHAPTER 1 INTRODUCTION

This chapter to be provided at a later date. 1-1

CHAPTER 2 7094 FORTRAN OPERATING SYSTEM

2.1 7094 FORTRAN SYSTEM DESCRIPTION. + v ¢ v « ¢« ¢ o o o o « o« « » 2=1
2.1.1 SYSTEM CONFIGURATION . . v & ¢ v o « o o« o o o 4 . 2-1
2.1.2 MACHINE CONFIGURATION. . . v v ©v « v v o o « o 4 . 2-4
2.1.3 SYSTEM TAPE MAINTENANCE. . . « . « « . & . 2-6
2.1.4 ERROR REPORTING. . . e e . 2-6

2.2 DETAILED PROCEDURES. + « + 4 o o o o o o o o o o o s v o o . .26
2.2.1 CONTROL CARDS FORMAT AND USAGE + « « « . 2-6
2.2.2 DECK STRUCTURE &+ v v v v v o ¢ o o o o o o o 4 2-37
2.2.3 PROGRAMMING AIDS + v v v v o ¢ o o o o o o o« 2-51

2.3 BIBLIOGRAPHY e e e e e e e e e e . 2-57
2.3.1 IBM 7090/7094 SYSTEMS REFERENCE LIBRARY. . . 2-59
2.3.2 MACHINE SYSTEM + &+ v v « 4 v « o o o o o o o o o o « . 260
2.3.3 PROGRAMMING SYSTEMS. + + + o ¢ o o « « o o o o + « « . 262
2. 3.“’ COBOL- ¢ e o e e e e e e o e e « . e o e . . . e e . 2"63
2o305 FORTRAN. . e o 0 o e . . 2"’6h’
2.3.6 INSTALLATION SUPPLIES. &+ + & + ¢ ¢ o o o o o o« o« « . . 2=68

25 February 1966 111

Parggragh
2.4

205

3.1

3.2

3.3

3.4

CONTENTS (Cont'd)

SYSTEM TAPE CONTENTS

UTILITY ROUTINES . & .+ v v 4 v 4 v ¢ v o o 4 .

2.5.1 FORTRANII

2.5.2 FORIRAN IV . . . o e

2.5 3 SU’PPORT- * ¢ ¢ e s+ e e o o e » L)
CHAPTER 3 CAMEO

CAMEO SYSTEM DESCRIPTION « + &+ 4 & o

.

3.1,1 SYSTEM STRUCTURE + v v & v 4 o o o o o .« . .
3.1.2 MACHINE CONFIGURATION. + v v o o o v o o o o .
3.1.3 ° SYSTEM TAPE MAINTENANCE. v v v o o o o « o o &
3.1.4 ERROR REPORTING. +
DETATILED PROCEDURES:. o « « « o o o o o o o . .
3.2.1 CAMEO CONTROL COMMANDS .+ v v ¢ o o v v o « . .
3.2.2 CAMEO CONSOLE SETTINGS &+ « « o o o o o . . .
CAMEO BIBLIOGRAPHY . . . & v v v v o o«
3.3.1 PROGRAMMING IN MYSTIC: A PRIMER ON THE USE OF
3.3.2 CAMEO SYSTEM DESCRIPTION . v « & « o o o o o+ .
3.3.3 CAMEO: UNIVAC 1107 USAGE. v ©v v v v v o« o o .
3.3.4 CAMEO: IBM 700U USAGE v v v v o v o o v v o W .
3.3.5 MYSTIC DICTIONARY ROUTINE.
3.3.6 R15 CAMEO QUICK DIAGNOSTIC FUNCTION PROGRAM

DESCRIPTION.

PROGRAMMING SUPPORT PACKAGES

3.4.1 UTILITY PACKAGE. . v + v v v o' v v v v v .
3.4.2 ARITHMETIC PACKAGES. . + + + +
3.4.3 SPECIAL PURPOSE PACKAGES . .

3.4.4 PERTPHERAL EQUIPMENT UTILITY ROUTINES.

o .

PR . .

. o & e .

3.3.7 R143 TAPE MODIFICATION ROUTINE PROGRAM DESCRIPTION

.

LA)UOO.\)UO w
Vi W =

wwwulaw w w w
H\O\0O\0O\O O

Page

. 2-T1

2-97

. 2-97
. 2-105
. 2-105

1 t
[

w
1
N

1]
[N]

]
(@]

ww
L |
=
loNe)

. 3-11

. 3-11
. 3-11
. 3-12
. 3-13

25 February 1966 iv

Paragragh
3.5

3.6

3.7
3.8

CONTENTS (Cont'd)

ENCODER TAPES+e ¢ ¢ ¢ o ¢ o o o o o o ¢ o o o o
3.5.1 ENCODER FOR UNIVAC 1107. . + « &« « « «
3.5.2 ENCODER FOR IBM 7094 (32Kg e e e e e
3.5.3 ENCODER FOR IBM 7094 (65K)
3.5.4 ENCODER FOR IBM 7094 (DOUBLE PRECISION).

FUNCTIONAL AIDS AND CODING SHEETS. . . .

3.6.1 MYSTIC STORAGE MAP + « .« .
3.6.2 CAMEO CODING SHEET . + v v & « o o o &
JOB PROCEDURE. + v o v o o o o o o o o o &
AOPB FUNCTIONAL SUBROUTINES. . &+ v & & « .« .

CHAPTER L4 EXEC 2 PROCESSOR-1107
This chapter to be provided at a later date.

CHAPTER 5 AUTOCODER~SPS

This chapter to be provided at & later date. . .

CHAPTER 6 SHARE OPERATING SYSTEM
This chapter to be provided at a later date.
CHAPTER 7 360 OPERATING SYSTEM

This chapter to be provided at a later date.

s & e »

T |

. 5-1

. 6-1

. T-1

CHAPTER 2 TO94 FORTRAN OPERATING SYSTEM .

25 February 1966 v
ILLUSTRATIONS

Figure
2-1 Flow Diagram of Combined IBSYS and FMS System Tape. . .
2-2 IBSYS Control Cards Format.,
2-3 IBJOB Control Cards Format. « . . + v o + . . .
2=k IBIDR Control Cards Format. « v v o
2-5 Operation of Overlay. . . . « v v v v v o o o o & . .
2-6 FMS Control Cards Formet. . . . e e e e e e
2-7 Sample FORTRAN IV Compilation, No Executlon
2-8 Sample FORTRAN IV Execution Run from Binary Decks e e e e e
2-9 Sample Multiple FORTRAN IV Compilations and IBMAP Assemblies.
2-10 Sample FORTRAN IV Compilation, IBMAP Assemblies,

Ioad Binary DeCKS. v ¢ v v v v o 4 o o o o o o o o
2-11 Semple FORTRAN IV Execute Programs from Binary Tape . .
2-12 Sample FORTRAN IV Modify PREST Decks and Execute. .
2-13 Sample FORTRAN IV Overlay Job + o & o . .
2-14 Semple FORTRAN IV Debug Execution
2-15 Sample FORTRAN II Execute + « . . .
2-16 Sample FORTRAN II Compile . . . v v v & v o o & + .
2-17 Sample FORTRAN II Compile and Execute
2-18 Sample FORTRAN II Compile and Execute with

Binary Subroutines
2-19 Sample FORTRAN II Compile, Assemble, and Execute . .
2-20 Sample FORTRAN II Compile, Execute, and Debug . .
3-1 Flow Diagram of CAMEO Operation
3-2 Mystic Storage Mep Form
3-3 CAMEO Coding Form + «

TABLES
Table
2-1 Mejor Computer Equipment (IBSYS/FMS) e e e e .
2-2 Peripheral Equipment (IBSYS/FMS). e e e e e
2-3 7094 FORTRAN Documentation Llstlng .. . e e
2-k 7094 FORTRAN Documentation Form-Number Index.
3-1 Major Computer Equipment (EXEC II).
3-2 Peripheral Equipment (EXEC II).
INDICES

Index

F:
o
(1]

Page

2-k
2-5
2-57
2-69
3-3
3-k

Page

Index 2-1i

‘ 27 May 1966

Paragraph
l L l

1.2

1.3

1-1
(1-11 blenk)

CONTENTS

CHAPTER 1 PRELIMINARY INFORMATION

INTRODUCTION « o« + « ¢ o o o o o o o o
CONTENTG L] . . L] . * . . . L4 L L] . L]
MISCELLANEOUS INFORMATION. . . « « + . 4 .

27 May 1966 1-1

l.l

1.2

CHAPTER 1

PRELIMINARY INFORMATION

INTRODUCTION

This manual describes the several different programming support sys-
tems employed at the Goddard Space Flight Center, namely, 7094 FORTRAN,
MYSTIC, EXEC II PROCESSOR-1107, and AUTOCODER-SPS. It is tailored to
the experienced programmer as it presents in detail how to use the
various support systems. Each Chapter in this manual is a separate
entity, and as such can be removed without disturbing the contents of
the other chapters. There is a detailed table of contents for each
Chapter, as well as a general table of contents covering the manual

as a whole.

CONTENT

Chapter 2 describes the TO94 FORTRAN operating system and its use.
It contains a system description, machine configurations, and system
tape maintenance and error reporting procedures. This Chapter includes
several illustrations showing job deck composition for a number of
typical runs; presents a description of the control cards and their
use; and offers means by which to use the system effectively. There
is a bibliography which provides the user an access to the list of
documents describing the major components of the TO94 operating sys-
tem. There is a section describing in brief the characterization of
the systems contained on the combined IBSYS/FMS master tape employed
on the TO94 A, B, C, E, and F computers. A final section describes
utility routines that have been prepared for use by Goddard Space
Flight Center programmers.

27 May 1966 1-2

1.3

Chapter 3 describes the Computer-independent Abstract Machine-
language Encoder and Operating system (CAMEO) and its use. It con-
tains a system description, machine configurations, and system tape
maintenance and error procedures. This Chapter includes several
illustrations showing computer set-up for a number of typical runs;
presents a description of control commands and their use; and offers
means by which to use CAMEO effectively. There is a bibliography
which provies a list of abstracts of documents on CAMEO. Also in-
cluded are functional aids and functional subroutines along with the
encoders that are embedded in the CAMEO system.

Chapter L4 describes the EXEC II System for the Univac 1107. It

touches upon EXEC II 1107-1108 configuration differences; details the
19 control cards that exercise control over the EXEC IT System; pre-
sents illustrations showing job deck composition for a number of
typical runs, as well as describing programming procedures, operating
procedures, utility routines; and has a bibliography to the list of
documents describing the major components of the 1107 operating system.

Chapter 5 describes the similar symbolic programing systems, the
Autocoder and the Symbolic Programming System (SPS) for IBM peripheral
equipment. It describes system configuration, machine configuration,
system tape maintenance and error reporting, processor-control oper-
ations, utility routines, as well as a bibliography with abstracts.

Chapter T is to be provided.
Chapter 8 is an addendum. The programmer uses this supplement to in-
sert memorandums, various forms, telephone numbers, and other infor-

mation to assist him in the performance of his everyday duties.

MISCELIANEOUS INFORMATION

This section will eventually include the forms pertaining to error re-
porting indicated in the subsequent Chapters of this manual.

7 September 1965

CONTENTS

CHAPTER 2 TO94 FORTRAN OPERATING SYSTEM

Paragraph
2.1 7094 FORTRAN SYSTEM DESCRIPTION. + . + & « « « o « o &
2.1.1 SYSTEM CONFIGURATION . . &+ & o o o o o o « o+ @
2.1.2 MACHINE CONFIGUATION . . & &« o o o « o o & .
2.1.3 SYSTEM TAPE MAINTENANCE. . o « o « o o o o o
2.1.4 ERROR REPORTING. + « « o « o « o o o o « o« o &
2.2 DETATLED PROCEDURES. © « & « o o o o« « o o o o o o
2.2.1 CONTROL CARDS FORMAT AND USAGE e
2.2.1.1 IBSYS Control Card Descriptlon . .
2.2.1.2 IBJOB Control Card Description . .
2.2.1.3 IBLDR Control Card Description .
2.2.1.4 FMS Control Card Description .
2.,2,2 DECK STRUCTURE . + « 4 o « « o & . e . .
2.2.2.1 FORTRAN IV--Compllatlons, No Executlon .
2.2.2.2 FORTRAN IV--Execution Run from Binary

Decks o e e

2.2.2.3 Multiple FORTRAN IV Compilatlons and

TIBMAP Assemblies. . . . o .

.

2.2.2.4 FORTRAN IV--Compilation, IBMAP Assemblies,

Load Binary Decks
Tape o o . ° L) o - L L] L] .

5

.6

T FORTRAN IV-=0Overlay Job.
8 FORTRAN IV--Debug Execution. .

FORTRAN IV-=-Execute Programs from Binary

FORTRAN IV--Modify PREST Decks and Execute .
. . . 2-43
. 2-4L

. 2-6
. 2=

2-11

. 2-23
. 2-29

2=37

. 2=37
. 2-38
. 2-39

2-40

2-h1
2-42

7 September 1965

Paragraph

2.3

2-11

CONTENTS (Cont'd)

Page
2.2.2.9 FORTRAN IT--EXECULE. . » « o o o o + o &+ » o 2=45
2.2.2.10 FORTRAN II--Compile. . « . « « « o « o o . . 2=U6
2.2.2.11 FORTRAN II--Compile and Execute. 2-47
2.2.2,12 FORTRAN II--Compile and Execute with

Binary Subroutines. . . . 2-48
2.2.2.13 FORTRAN II--Compile, Assemble, and Execute . 2-49
2.2.2.14 FORTRAN II--Compile, Execute, and Debug. 2-50
2.2.3 PROGRAMMING AIDS o e s & s s e 2-51
2.2.3.1 FORTRAN II . . v 4 v & o o « o s o o s o o 2-51
2,2.3.2 FORTRAN IV e o e o . 2=52
2.2.3.3 65K Dump Routine--Operating Instructlons . . 2-55
2.2.3.4 7094 Machine Language I/O. . « « « « « « « . 2=56
2.2.3.5 Channel Tape Assignments 2-56
BIBLIOGRAPHY . e 1
2.3.1 IBM T090/7094 SYSTEMS REFERENCE LIBRARY. 2=59
2.3.1.1 7094 Data Processing System Configurator . . 2-59
2.3.1.2 IBM TO94 Model II Configurator 2=59
2.3.2 MACHINE SYSTEM 2-60
2.3.2.1 TO94 Data Processing System--Principles of
Operation e . e e e . . 2=60
2.3.2.2 IBM TO94 Model II Data Processing
Ssystem (Bulletin) . . e . . . 2-60
2.3.2.3 IBM 729, T330, and 727 Magnetic Tape Units--
Principles of Operation 2-60
2.3.2.4 IBM 1301 and 1302 Disk Storage: Sequential
Data Organization 2-60
2.3.2.5 IBM 1301 and 1302 Disk Storage Models l
and 2, with the 7090, TO94, and TO9k4
Model IT Data Processing System 2-61
2.3.3 PROGRAMMING SYSTEMS. . . « & 2-62
2.3.3.1 Catalog of Programs for IBM Data Processing
Systems=-KWIC IndeX . o o o o o o o o o o 2=62
2.3.3.2 IBM T090/TO9%4% Progrsmming Systems: FORTRAN
II Assembly Program (FAP) 2-62
2.3.3.3 IBM 7090/7094 Programming Systems: Macro
Assembly Program (MAP) Language 2-62
2.3.4 COBOL. . e .. 263
2.3.4.1 COBOL--General Information Mamual. 2-63
2.3.4.2 IBM 7090/7094 Programming Systems: IBJOB
Processor Part 5: COBOL Compiler
(IBCBC) + v o v v e v v v o o o o o o+ o« 2=63

‘ T September 1965 2-iii

CONTENTS (Cont'd)

Paragraph Page
2.3.5 FORTRAN. . . P . . v s« . . 2-bh4
2.3.5.1 IEM 709Q/7o9u Programmlng Systems
FORTRAN II Programming. . . e e .. 2-6L
2.3.5.2 IBM 7090/7094 Programming Systems
FORTRAN II Operations . . . 2-64

2.3.5.3 IBM T090/TO94 FORTRAN IV Compiler (IBFTC)
Replacement: Specifications and Language

Additions o v v 4 v s v v 4 v e 2=6L
2.3.5.4 FORTRAN. . . . e o o . 2=6h
2.3.5.5 IBM 7090/7094 Programmlng Systems

FORTRAN IV Language 2-65
2.3.5.6 IBM TO90/T7094 IBSYS Operating System

IBJOB Processor . . . « v . 2-65
2.3.5.7 IBM 7090/709& IBSYS Operating System

Specifications for IBJOB Processor

Debugging Package . . . e e e e . . 2=65
2.3.5.8 7090/709& PROGRAMMING SYSTEMS IBJOB

‘ Processor, Overlay Feature of IBIDR . . =2-65
2.3.5.9 IBM T090/TO94 IBSYS Operating System:

Input/Output Control System 2-65
2.3.5.10 IBM 7090/TO94 IBSYS Operatlng System

Utilities 2-66
2.3.5.11 IBM 7090/T709k4 Generallzed Sortlng System

7090/ 7094 SORT. 266
2.3.5.12 IBM TO90/709H IBSYS Operating System

System Monitor (IBSYS). e e e 0 s . 266
2.3.5.13 IBM T090/7094 IBSYS Operatlng System

Operator's Guide. e e .. 267

2.3.5.14 IBM 7090/709& IBSYS Operating System
Symbolic Update Program--Prellminary
Specifications. 267
2.3.5.15 IBM T090/T094% FORTRAN v Language Input/
Output without Explicit List and

Format., . o« o « o o o o ¢« o « o o o o . 2-67

2.3.6 INSTALLATION SUPPLIES. + +» v v o + « o + o » o » . . 2-68

2.3.6.1 7094 Reference Card. « « o « v o o o - . . 2-68

2.3.6.2 COBOL Program Sheet. . « . » « ¢ o « o . . 2-68

2.3.6.3 COBOL Reference Card . + + « o o o o « « « 2=68
2.3.6.4 IBM TO4O/U4-7090/94 Symbolic Language-

Coding Sheet. « « v & ¢« ¢ ¢« ¢« ¢« ¢« +« « . 2-68

2.3.6.5 FORTRAN Coding FOIM. « « « « o & o « » o . 2-68

7 September 1965

Parggragh
2.4

2.5

2=-iv

CONTENTS (Cont'd)

SYSTEM TAPE CONTENTS . . & v ¢ v o o a o o o o o o o s o o

2.4.1

2.k,2

UTILITY

2.5.1

2.5.2

2.5.3

FORTRAN MONITOR SYSTEM (FMS) . e e e e
.1 FORTRAN II Compiler.
2 FORTRAN II Assembly Program (FAP)
.3 Binary Symbolic Subroutine Loader (BSS).
.4 FORTRAN II Library e e e o s e o e e e s
MONITOR (IBSYS) . e e e e e e
IBJOB Processor o v e e o e e e s
The Commercial Translator Processor (CT)
The 9OPAC Processor (SOPAC). C e e
The Input/Output Control System (IOCS)
The IBSFAP
The FORTRAN II Processor (Version 3) .
The Utilities (DK90OT) . e e
The RESTART Program. . . «

~ H - H

Y

g

.
.

.

r:::::r:m::rt

f\)f\)f\)l’\)l\)l\)l\)l\)(ﬂf\)l\)l\)l\)
CDQO\\HJL'LA)I\);—‘

ASI\CERAVIN\ VIR \ VIR AC I AV IRV}

ROUTINES . « « « . & « o « o &

FORTRAN II s e e e e e e
UMPLOT Plotting Subroutine . .o . e
FORTRAN Subroutines for Using 65K . e .
CalComp Subroutines for IBM TO94 . . .
CALL CCPLOT (X, Y, IC) . ..
CALL CPIOTS (BUFFER, IDT, INDICS).

e e

EET\\JTF‘UJI\)H

gropPL

Iv 3 o o © o o ° L . * Ll . ° L] .
UMPLOT Plotting Subroutine o & e o ®
FORTRAN Subroutines for Using 65K

(G RGBS R R, RS RS, R |
= W3

°
.

.-% .

° ° ° - * o . . o o

FORTRAN Preprocessor o e e e« e s s
Routines on the Cl Utility Tape o e e s
WDOMFP-Octal Mnemonic/Floatlng Point Core
Dump (Record No. 1) . o e e e e
MXMRGE-Merge Mods with SQUOZE
(Record No. 2). e e e
IBTD-Tape Dump (Record No 3). e e e e
PPTDAC~-Tape Duplicate and Compare
(Record No. 5). .
MXHSPR-Print High Speed from Log Tape
(Record No. 12) . . .
MXPRIG=Select TTY Data from Log Tape
{Record No. 13) . e e e e e e e e

.
A\ N wwoan
> PN

NN
W W e b Lwwwgd N

n

°

[AVEEAV)
A TN

n
o (AN

no
\N

CALL SYMBOL (X, Y, HEIGHT BCD, THETA N).

. 2-97

- 297
- 2=97
. 2-101
. 2-103

2-10k

. 2-10k4

2-104
2-105
2-105

. 2=105

2-105
2-105
2-105

. 2-106

. 2-106
. 2=106

2-106

2-106

. 2-107

. T September 1965

Parggragh

,;’
i
[+
H
(]

]
H\O O~ O\ Ew

1
O

l\)[\)l\)l\)l\)!l\)l\)l\)f\)f\)

Mo o 1
H
W

2-14
2-15

. 2-16

2.5.3.9

2.5.3.10
2.5.3.11
2.5.3.12

2.5.3.13
2.5.3.1k

2.5.3.15
2.5.3.16
2.5.3.17
2.5.3.18
2.5.3.19

CONTENTS (Cont'd)

MXCHER-Print Selected Subchannels from
Mercury Log (Record No. 14)
HSINT-Decode and Print High Speed from
Log Tape (Record No. 15).
MXPOCL~Print Mercury Log Tape in Octal
(Record No. 16) . . v o v v v v o .
MSHSPL-Log Tape Plotting Program
(Record No. 20) .
GFCHEK -Checksum Corrector (Record No 25)
OHCOl-Hollerith to OCT Pseudo-Op Card

Image (Record No. 27) . . « « . . .
WDCTS-Card-to-Tape Simulator
(Record No. 32) . e e e e e e e

SUMMARY -Summaxrize SOS SQUOZE Tape Statlstlcs

(Record No. 36) . e e e e e e

|
nge

2-107
2-107

2-107

. 2-107

2=-107

2-108

. 2-108

.

2-108

COL8ER-Update Symbolic Tape, Produce Symbolic

from Listing Tape (Record No. L41) .
MXTLCO~Print Real-Time CORE Output

(Record Nouw 5T) v v v v v v v v v o o &
SHARE Library IndeX. . + ¢« + « ¢ « & o o &

ILLUSTRATIONS

Flow Diagram of Combined IBSYS and FMS System Tape.

IBSYS Control Cards Format. « o e o s e e e e
IBJOB Control Cards FOrmat. o o = o o + « o o o o o » o
IBLDR Control Cards Format. . . + v + o + ¢ o o o o o o
Operation of OVerlay. . . o o o o o o « o o o o o o o o
FMS Control Cards Format. . . « s s e o s
Sample FORTRAN IV Compilation, No Execution o e o e e

Sample FORTRAN IV Execution Run from Binary Decks .

Sample Multiple FORTRAN IV Compilations and IBMAP Assemblles.

Sample

FORTRAN IV Compilations, IBMAP Assemblies,

Load Binary DecksS. . . v + 4 o & o 6 s o o o o s o o
Sample FORTRAN IV Execute Programs from Binary Tape
Sample FORTRAN IV Modify PREST Decks and Execute.
Sample FORTRAN IV Overlay JOD « o v v o o o o o o o o o o o
Sample FORTRAN IV Debug Execution . . . « « + ¢ v o « o o
Sample FORTRAN II EXeCULE . o ¢ v o o o o o o o o o o o o
Sample FORTRAN II Compile o o o o o o o o o o o o o o o »

.

2-108

2-108

. 2-109

i

mmmr\)rlvmmmm
WWWW NN W
O O+ Ahww

]
=
(e}

)
B gl o
&SBE

2-Lk

v
=
\w

2-L6

7 September 1965 2-vi

Figure

2-17
2-18

2-19
2-20

Index

ILLUSTRATIONS (Cont'd)

Sample FORTRAN II Compile and Execute. . .

Sample FORTRAN II Compile and Execute with Binary
Subroutines 0. . o e e
Sample FORTRAN II Compile, Assemble, and Execute
Sample FORTRAN II Compile, Execute, and Debug. .

TABLES
Major Computer Equipment « . « « ¢« « o &
Peripheral Equipment e e e e e e

7094 FORTRAN Documentation Llsting . . e
7094 FORTRAN Documentation Form-Number Index .o

INDEX

Chapter 2 INDEX TO CHAPTER 2 . « « « « o « o o o & o o o o

T September 1965

2.1.1

na
]
-

CHAPTER 2

TO94 FORTRAN OPERATING SYSTEM

7094 FORTRAN SYSTEM DESCRIPTION

This chapter describes the TO94 FORTRAN Operating System and its use.
The TO94 FORTRAN system is available on all Goddard Space Flight Center
Data Systems Division large scale computers. An integral part of the
IBM TO94 Data Processing System, the TO94 FORTRAN system consists of

a comprehensive set of programming aids operating under a master System
Monitor as subsystems. The System Monitor consists of 1) The System
Supervisor, 2) The System Core-Storage Dump Program, 3) The System
Editor, 4) The System Nucleus, and 5) The Input/Output Executor.

The TO94 FORTRAN Operating System is designed to process sequentially
a variety of unrelated jobs with little or no operator intervention.
With less human participation, jobs are processed more rapidly and
there is less likelihood of human error.

SYSTEM CONFIGURATION

The FORTRAN IV compiler and its associated assembly program, IBMAP, are
embedded in the IBSYS/IBJOB operating system on the TO94 date process-

ing equipment. This system is completely independent of the FORTRAN II
monitor system, FMS. However, the two systems have been combined onto

one tape which is now in use on the 7094 A, B, C, E, and F computers.

To make the two systems as compatible as possible, additional control
cards are used to enable either system to call in the other. Thus,
FORTRAN IT and IV jobs may be batched on the same input tape. However,
each job must operate wholly within one system or the other. Mixtures

7 September 1965 2-2

within a job are not permitted. Furthermore, the relocatable decks
produced by the two systems are not compatible, and standard subroutine
linkages are different. If FORTRAN II jobs are to be converted to
FORTRAN IV, the source program should be SIFTed and recompiled. (sIFT
is a program to convert FORTRAN II language to FORTRAN Iv.)

The flow diasgram (Figure 2-1) illustrates the various components on

the system tape and the paths of control between them. The notaticns

on each line indicate the control card, statement, conditions, or

action which causes that path to be taken. For the sake of clarity,

this diagram is simplified and does not show all possible error returns,
restart, and recovery procedures, etc. It also omits the inter-component
logic of the FORTRAN II Version III, IBSFAP, CT, SORT, 9OPAC, and IOCS
processors which are also on the tape and are controlled by IBSYS.

Tape assignments within IBSYS, IBJOB, etc., now conform to the FMS
assignments. Namely, logical units 1 through 10 correspond to Al through
Al0; 11 through 20 to Bl through Bl0O; and 21 through 30 to Cl through
Cl0. As with FMS, logical 2 is the standard input tape and logical 3

is standard print and punch output. Any other tapes used by a FORTRAN

IV program may be either in a BCD mode or & binary mode, but must never .
be in a mixed mode; i.e., BCD binary records on the same tape. Such a
tape can be written, but it is difficult to read. Symbolic tape unit
designation should also be avoided. Although permitted by the manual,
the following construction is undesirable as it is likely to cause
failures.

KTAPE = T
WRITE (KTAPE, 100) A, B, C

All I/0 activity in FORTRAN IV/IBMAP programs must be handled by IOCS.
The FORTRAN IV compiler sets this up automatically. However, it is
imperative that the IOCS manual, C28-6100-2, be consulted before attempt-
ing to perform I/0O in a MAP language program.

For programming on FORTRAN IV, consult IBM 7090/7094 Programming Systems:
FORTRAN IV Langusge, Form C28-62T7h4-k.

2-3

T September 1965

adey waysAS SWI pus SXSHI PIUTQUOD

JO ueI3vT(MOTJ

NOILND3IX3
WY¥908d
153rgo YONYI QILOFLIA HO dWNA TIVO
; MO LIX3 TTIVD MO WVYNOONd NIVIN NI NMMRLIY
&
y P
¥OuH3
¥OuY3 ON ONIQVO
aNV NOLLJHO HO 090N - NOILND3IX3
09 sNd 3dVL SNTd 3dvL auvo auvo ﬁ auvo WNVHO0Nd YT
avol No “4°0°3 avoTI NO *4°0°3 an3 oN3 aN3 193rgo
dWNG VD HO L1X3 VD
Advad 3 d3TaNISSY d3771dNOD H43TIdWOD Aﬁ
#3avon dvingl Al NY¥ 1804 108900
Flami=1] HOHH3 ON Y >
ﬁ y 'Y 7 Y *3137dW0D HoMM3 QuvD awvo B
oNlavoT avon an3 an3
AdvydIT B H43TGW3ISSY d3711dW0OD
NO1LdO 219507 dvingl s EYETE R
HO dVW HO 0D H434AVvOT ss8 dvd it Nvdl1H0d
SNTd “IdVL LAdNI NO “4°0°3 80 AMINI S o808l s ¥
* dvdg ﬁ
sAsal SASWA S
— *4°0°3 MO viva, QyVD OMLINOD SWA
¥O QuVD ANVYNIE NV NVHL ¥3HLO
gorsl < Quvd DIT0EWAS
a sAsEl S —
4
soral
HO1INOW
ILND3X3I S
I NVYH 1§04
s201 IAWVYN
Svd 06 > W3LSAS R ﬂ ﬂ
PRV ~ 3inoaxas sAsal SASWA $ v
12
avasal ! # —
- —
111 NOISH3A Py
H NVHLMOS QMVD 1MVLS

*T=g 2aIndtd

WILSAS SINd ANV SASEI A3INIGWOD

INVYHOVIO MOT14

11 NVH.LHOd

1yVLS

7 September 1965

2.1.2. MACHINE CONFIGURATION
The programmer using the Goddard Space Flight Center computer complex
has a vast quantity of data processing equipment at his disposal.
IBSYS/FMS combined system operates on several of these large scale com-
puters. A partial list of this equipment is given in Table 2-1. 1In
addition to the major computer configurations, there exists an associ-
ated collection of peripheral equipment. A partial list of this equip-
ment is given in Table 2-2.
Table 2-1. Major Computer Equipment
Bldg.| Computer |Memory Magnetic Line Card Card Data
Loc. | Facility | Size | Tape Units | Printer|Reader | Punch | Disk [Channel; DCC
14 | A-TOSL 65K | 14-~729-IV T16-1 |T7223-I 1301-IT] 3 Yes
14 | B-TO9L 65K | 14-729-1IV 716-I |T7223-1 1301-II] 3 Yes
3 | C-TO94-II| 65K | 1k-T729-IV 716-I {7223-I| 721-I [1301-II} 3 Yes
1 | E-TO94-II| 32K | 12-T729-IV T716-I | T711-I| 721-I 2 No
4~-T729-VI
3 | P-TO94 32K | 12-729-1IV T16-I | Til-I 2 No

The

7 September 1965

Table 2-2., Peripheral Equipment
Bldg. Computer Memory Magnetic Card Line
Loc. Facility Size Tape Units Read/Punch Printer
1k A-IBM-1401 1.4K 1-7330 1403-II
14 B~-IBM-1401 8K 2-T7330 1402-1 1403-I1
14 C-IBM-1401 8K 3-7330 1402-T 1403-II
1k D-IBM-1401 LK 2-7330 1012-1% 1403-II
1402-T
14 E-IBM-1401 4K 2-T29-I1 1402-1 1403-I1
14 F-IBM-1401 8K 2-729-1I1 1402-1 1403-1I1
1 IBM-1460 8K L-T729-VI*** 1402-1 1403-II1
2-T729-TV*%*%
14 I-IBM-TO10%* 100K 8-729-1V 1402-I 1403-III
14 IBM-1401 8K Y-729-1V 1402-1 1403-1IT
14 CDC-3200%* 16K 5-607 4o5 501
523
20 CDC-3200
3 CDC-160A LK 2-603 16T*%% 166 -2%%*
17O%%*
3 CDC-160A LK 2-603 *¥% *X*
*®¥%

¥Paper tape reader/punch
*%¥1301 disk

*¥¥Switchable units

7 September 1965 2-6

2.1.3 SYSTEM TAPE MAINTENANCE

The Programming Methods Section (PMS) of the Data Systems Division
has primary responsibility for maintaining the combined IBSYS/FMS
master tape. Tape revisions or updating occur periodically as a
result of one or more of the following conditions: 1) new IBSYS
version or significent corrections released by IBM; 2) major changes
originating from GSFC programmers; and 3) catastrophic errors requir-
ing the immediate issuance of new tape.

In certain cases, when errors are of a minor consequence or unique to
a particular application and immediate release of & new master tape
is not warranted, the PMS provides binary decks to circumvent the
error condition. With the release of new master tapes, the decks

are subsequently discarded by the programmer.

2.1.4 ERROR REPORTING

The PMS has the responsibility of maintaining the combined IBSYS/FMS
system. Any questions regarding system utilization and system dis-
crepancies should be directed to PMS personnel. The current method
of reporting system discrepancies verbally is expeditious. However,
it is recommended that the Systems Discrepancy Report (see Form 1-1,
Chapter 1) be used for submittal to the PMS coordinator. in this
wey, & current file of all discrepancies will be maintalned along
with the corrective actions taken. A copy of the Discrepancy Form
will be available in the PMS coordinating office (Room 127, Bldg. 3)
and in the dispatcher's office (Bldg. 1 and Bldg. 3). Programmers
are requested to periodically check the Systems Status Report (see
Form 1-2, Chapter 1) to insure satisfactory operational performance
from the system used.

2.2 DETAILED PROCEDURES

This section includes several illustrations showing job deck compo-
sition for a number of typical runs; presents a description of the
control cards and their use; and offers means by which to use the
system effectively.

2.2.1 CONTROL CARDS FORMAT AND USAGE

This paragraph presents in detail a description of the control cards
that IBSYS, IBJOB, IBLDR, and FMS recognize. The user controls and
directs the processing of his Job by inserting the proper control cards
in the job deck, thereby directing the Operating System to perform any
one of several operations. An illustration is provided depicting the .
placement and categorizing of the importance of the control cards.

7 September 1965 2-7

2.2.1.1

SEE
PAR, 2,2.1,1

(1)
(2)
(3)
(4)
(5)
6)
(7)

IBSYS Control Card Description

A dollar sign ($) in column 1 accompanies all IBSYS control cards.
Except for the comment card which has an asterisk, card function is
punched beginning in column 2, with no embedded blanks. All systems
on the tape recognize the $IBSYS card. This ensures control by IBSYS
of its control cards. These control cards are placed in any order,
but must follow an $IBSYS card. An $ID card is mandatory if the job

is to perform any meaningful processing. Figure 2-2 shows the IBSYS
control cards format.

F12{3 |4 |5(6 |7 (8|9 f10[I1i|12|I3|14]15]16 [17 {18 |19 |20] 21
$l1|B|s|Y|s

$11}|D Lip|bp|LlbpfDfD|D|L}JL|L

$/J]0|B p|[o|L D|D|D|D|[oprrions
$S|EIX|E|[C|U|T|E sygTEM NAME:
$|DIA|TI|E M{M|[D] DlY]Y
$ %& COMMENT
$|PIAIU|S|E C4MM%NT

NOTE: coNTRoL cARDS (1), (2), AND (4) ARE ESSENTIAL, (3) MAY BE USED
INTERCHANGEABLY WITH $1D cARD, (5) THROUGH (7) ARE USED
FREQUENTLY.

Figure 2-2. IBSYS Control Cards Format

7 September 1965 5.8

An individual description of IBSYS control cards is as follows:

(1) $1BSys:

11213145]|6]|7 72
s|li1IBls|Yls

This card reloads IBSYS and transfers control to its beginning. When
IBSYS recognizes this card, it initializes the I/0 configuration, and
destroys the effect of any previous $ID or $DATE card.

(2) $ID Job Number Time Initials:

112|3]|4{5]6]7}|8]9]10]11}12]13]14]15]16 72
$11]|D Lol pjL]plo]lDlD{L}L]L
JOoB RUN TIME INITIALS
1 NUMBER MINUTES ! |

A job number; consisting of a letter, followed by two digits, and

T (testing), P (production), or R (rerun) is a requirement. The other
information is optional. Time is the estimated running time of the
job in minutes and Initials are the initials of the person submitting
the job, a&s recognized by the Dispatcher.

(3) $J0B Job Number Time Options:

1{2]3}4)15{6]7(8]|9|I0|NN}I12]I3]14]I5]16 72

$lJjo|B Li{polpo}L D|D|D|D OPTIONS

This card reloads IBSYS trom the system tape and insures complete
initialization of the system at the expense of some additional exe-
cution time. Thus, $JOB must precede any $DATE, $EXECUTE, or other
control cards which have an initializing effect on the system. A

Jjob number, consisting of a letter, followed by two digits, and T, P,
or R, is & requirement. Time is the estimated running time in minutes.

T September 1965 2-9

(4) $EXECUTE System Name:
121 3]4|5]6|718]9]10 1nti2fizfialis|ie 72

$IE| X|E|CJU|TI|E SYSTEM NAME

This card causes the controlling element of the designated system to
be loaded, and control is transferred to it. The IBJOB monitor controls
FORTRAN IV, IBMAP, COBOL, and their loader, so that a FORTRAN IV run,

for example, must contain an $EXECUTE IBJOB card. The permissible
system names are:

SYSTEM NAME SYSTEM DESIGNATION
IBJOB for FORTRAN IV, IBMAP, COBOL
FORTRAN for FORTRAN II version III
IBSFAP for FAP under IBSYS using I0CS
CT for Commercial ‘Translator

. SORT for 7090 Sort/Merge Processor
GOPAC a commercial data processing

language processor
I0Cs independent IOCS

NOTE: FORTRAN II version III is not the customary FORTRAN II
in use at Goddard Space Flight Center. It is FORTRAN IT
cperating under IBSYS, which imposes storage restrictions
on the object code, and contains no local modifications.
The usual FORTRAN II system is called by the $FMSYS con-

trol card.
(5) $DATE:
12345A6 7181910111 |12 I3 {14i{i15{16}17}18]19]20|21{22 72
$ IDIA|TIE | MiM|D |D]Y]|Y

Columns 16-21 contain six digits representing the date. This date is
part of the output of the IBJOB system. The $DATE card is optional,
but once encountered, it remains effective until replaced by an $IBSYS,
$FMSYS or another $DATE card. If there is no $DATE card, the date of
. : some. preceding job (if IBSYS has not been loaded in the meantime) or

the date of creation of the system tape is part of the output of the
IBJOB system.

7 September 1965 2-10

(6) $*:

1§23 |45]|6 178]9 |10]11]12{I3 |14]IS [I6 72

$ * COMMENTS

The contents of this card are printed on-line for communication with
the operator.

(7) $PAUSE:
1{2]3]a]s]efj7]8]ofoluji2]izfiajis]ie 72
s|PlA|uUls IE i COMMENTS

This card causes the machine to halt. The operator presses the START
button to continue the job. Since all control cards print on-line,
columns 16-T72 may contairn a message to the operator.

7 September 1965 2-11

2.2.1.2

IBJOB Control Card Description

The $IBJOB control card is the first card in an IBJOB deck (i.e.,
following an $EXECUTE IBJOB card). However, the $ID, $JOB, and/or
$DATE card can precede the $IBJOB card if IBSYS is unable to recog-
nize these cards. For example, several jobs can be run in succession
within the IBJOB framework, without going back to IBSYS between Jjobs.

An $IBFTC card precedes each FORTRAN IV source deck before compilation.
An $IBMAP card precedes each IRMAP symbolic or PREST deck to be assem-
bled. An $IBLDR card precedes each relocatable binary deck (that is,
for each individual subprogram).

FORTRAN IV compilations, IBMAP assemblies, and binary decks to be
loaded may be arranged in any order within a given job, provided
each subprogram is prefaced with an appropriate control card. The
order of deck placement determines the order of their storage in
memory, except as modified by $ORIGIN cards. The complete object
program deck is placed behind the $IBJOB card.

If the $ENTRY card is used, it must be placed behind the object pro-
gram deck. $DATA card must be placed behind the $ENTRY card, if
present, or behind the object program deck if there is no $ENTRY card.
Any data cards which the object program expects to find on logical 2,
the standard input unit, are placed behind this $DATA card. If data
cards are present, an end-of-file card must follow them.

$* comment and $PAUSE cards may be placed anywhere in the deck that
IBJOB (or IBSYS) expects to find control cards. $IEDIT or $OEDIT
cards may be placed anywhere in the deck that IBJOB expects to find
control cards, provided they follow the $IBJOB card.

One or more *¥ALTER cards must follow any $IBMAP card which follows

an $IEDIT card containing the ALTER option. An *ENDAL card must
terminate the alter deck. The IBMAP symbolic or PREST deck must
follow the *ENDAL card unless an alternate input unit was also speci~
fied on the $IEDIT card. In this case, a matching $IBMAP card and

the symbolic or PREST deck must appear on the specified unit. Once
again, the ordering of the cards for altering a subprogram is: $IEDIT
with ALTER option, $IBMAP, a succession of *¥ALTER card + symbolic
insertions, *ENDAL, symbolic or PREST deck.

Following an $IEDIT card specifying an alternate input unit, all
FORTRAN source decks, IBMAP symbolic or PREST decks and relocatable
binary decks for which there are $IBMAP, $IBFTC, or $IBLDR cards in
the main input will be taken from specified alternate unit until

another $IEDIT card, an $ENTRY card, $DATA, or an end-of-file is
encountered on the normal input unit. Alter decks are always taken

from the normal input unit. Each deck on the alternate unit must be

7 September 1965 2-12

prefaced with an $IBFTC, $IBMAP, or $IBLDR card, as eppropriate, on
which the deck name matches that of the corresponding control card
in the main input. They need not contain matching options. The
options specified on the control cards on the normel input unit will
be exercised; those on the alternate will be ignored. Figure 2=-3
shows IBJOB control cards format.

NOTE: All relocatable binary decks result-
ing from a compilation or assembly under
IBJOB will contein at least two, and at most
five, automatically produced control cards.
These cards are considered part of the deck
and should never be removed, nor should the
deck be rearranged in any way. The first
card of the deck should be either $TEXT,
$DDICT, or $FDICT (in that order of de-
creasing likelihood), and the last card
must always be a $DKEND. The system will
also punch out an $IBJOB card for each

job, and an $IBLDR card shead of each re-
locatable binary deck. These may be used
on subsequent runs or discarded according
to the user's needs.

. 7 September 1965 2-13

seePar. 2.2.1.2(1 | 2|3 4als|e |78 elic]uli2;13 14|15]16]17[18[19]20]21
nN]s|1.B|s v |
)1 9% lfD ‘L_ p'b!L{bp{bplopD DAL“EL L | COMMENTS
3)|s|J|o|B Lio|po|L ‘D D/D|D o»%rlonrqs
(@)|s|1]|B|J|o|B | e OPTIONS
BG){$|1|B|F;T|C | DECKNAME | oplirlo::qs
6B)|$s]| 1|B{M|A|P DE'ICKN:AME::]L C(;‘UNT:. OPTlC‘)NSA
7)|$|{1{B|LID|R DE.’CKNxAME; i OPTIONS
(8)|$|D|A|T A i
DI$| N A M| E OPTION
(MIS|I E{N|TIRIY | ‘ OP'TlOI'\IS
(is|pjA|T|E| | ’ B mMm|M|bo|b |y |y
12){s | ¥ ! : ‘ ' 'COMMENTS
: —t—t
(13){$| P|AjU| S|E | ; COMMENTS
‘ 1a)|$| 1| B|R L | l
(a5)i{$| 1 |E|DjI|T
(16)]$| OEID| I{T
(17) | m X|AjL|T|E|R| N
(18) | m ¥tAILIT|E R I N) L, K
(19) *|e|n|D|Aa|L

NOTE: coNTROL CARDS (1) THROUGH (7) ARE ESSENT!AL,(CARDS (2) AND
(3) MAY BE useD INTERCHANGEABLY j; HOWEVER (2) IS PREFERRED);
(8) AnD (10) THROUGH (I3) ARE USED FREQUENTLY ; (9) AND (14)
THROUGH (I9) ARE USED OCCASIONALLY.

‘ Figure 2-3. IBJOB Control Card Format

7 September 1965 2-14

An individual description of IBJOB control cards is as follows:

(1) $IBsYS:
3|4

I1]2

5 167 B . 72
s|1|B|s|vy|s,

IBSYS is called in, replacing IBJOB, and control is transferred to
it. The System Supervisor is called 1in.

(2) $ID Job Number Time Initials Etc.:

1]2)3(4(5[6(718(910/11[12!13 1411516 72
T] :
$;l D L. {D DJL pjp b|{p|L|L|L COMMENTS
: JoB | TIME ' INITIALS i
| | (MINUTES) | |

This card is described under IBSYS control cards. It 1s also recog-
nized by IBJOB to obviate the necessity of returning to IBSYS after
each job.

(3) $JOB Job Number Time Options:
12 3’ als516(7|8|9|10] 11j12|13]|14|15]|16 72
a

B LIp|D D D| DD OPTIONS

$‘J OI

This card reloads IBSYS from the system tape and insures complete
initialization of the system at the expense of some additional exe-
cution time. Thus, $JOB must precede any $DATE, $EXECUTE, or other
control cards which have an initializing effect on the system. A
job number, consisting of a letter, followed by two digits, and C,
T, P, or R, is a requirement. Time is the estimated running time in
minutes.

(4) $IBJOB:
1j2(3)4|516l7|8 9|0 m|12]13]14]|15]16 72
$|1iB}|JjO Bl OPTIONS

This card provides IBJOB with control information which governs the
processing of object decks in this job. There are seven options:
(The standard options are underlined.)

T September 1965 2-15

1. GO or NOGO--GO instructs the system to load and execute this
job when an $ENTRY card or an end-of-file is encountered on the
input unit. NOGO suppresses execution of the object code.

2. IOGIC or NOLOGIC--LOGIC causes the off-line printout of the
origin and extent of each subprogram in the job (including library
routines), all symbolic references between various routines and
I/O buffer assignments. NOLOGIC suppresses this printout. The
use of the LOGIC option does not imply that the GO option must
also be used.

3. MAP or NOMAP--MAP provides a complete storage map of the object
program, to be printed off-line. NOMAP suppresses this printout.
The use of the MAP option does not imply that the GO option must
also be used.

h. FILES or NOFILES--FILES causes the off-line printing of a file
Tist showing all I/C unit assignments and tape mounting instruc-
tions applicable to this job. NOFILES suppresses this printout.

5. FIOCS, LABELS, BASIC, MINIMUM or IOEX--This option, governs
what portion of the IOCS package is to be made available to the
object program at execution time. LABELS is the full IOCS package
with labeling features., BASIC is the full IOCS package but with-
out labeling features. MINIMUM is basic IOCS minus the routines
for handling internal files; for stringing buffer pools together;
for transferring input directly to output; for checkpoints and for
the hardware functions of write end-of-file, backspace file, back-
space record and rewind. IOEX is a trap supervisor. It does not
handle the initiation of I/0 operations. FORTRAN IV programs re-
quire minimum TI0CS. The use of ENDFILE, BACKSPACE, or REWIND
statements in a FORTRAN routine does not necessitate calling in
basic IOCS.

6. SOURCE or NOSOURCE--SOURCE informs the system that this job
contains at least one compilation or assembly. NOSOURCE tells the
system that this job contains only binary decks to be loaded. This
circumvents the system's need to transcribe binary decks onto a
scratch tape to hold them while compilations or assemblies are in
progress. NOSOURCE running under the SOURCE option will be pro-
cessed correctly, but at the expense of some additional tape han-
dling. NOSOURCE may not be used when the binary decks are obtained
from an alternate unit by means of an $IEDIT card.

7. FLOW or NCFLOW--This option applies to overlay jobs. The loader
detects inadmissable overlay structures, such as the existence of

7 September 1965 2-16

CALL statements which cause themselves to be overlaid. The FLOW
option causes error messages to be printed (off-line) and the
execution to be deleted if such errors occur. NOFLOW permits
execution to begin in spite of such errors, and suppresses the
printing of error messages unless the LOGIC option is also used.

NOTE: GO, MAP, and LOGIC are independent options. Any one or
any combination of these options will cause the object program
to be loaded as if for execution. However, execution will take
place only if the GO option is exercised. If NOGO, NOMAP, and
NOLOGIC are all in effect, loading is suppressed.

(5) $IBFTC Deck Name Options:

2134|5167 |8]9]10{1I{12]13]14 |I5 |I6 72

$

OPTIONS

IIB|F|T| C DESKNrMﬁ

|1 [|

Normally this card informs the system that the following deck is a
FORTRAN IV source program to be compiled. The $IEDIT card may be

used to inform the system that a FORTRAN IV source deck ready for

compilation is located on a specified alternate input unit. There
are six options: (The standard options are underlined.)

1. LIST, NOLIST, or FULIST=--LIST indicates that an off-line list-
ing of the generated IBMAP coding is desired. NOLIST suppresses
this listing as well as assembly error message printout. Compiler
errors are always printed. The LIST option produces a listing of
generated IBMAP coding without otttal equivalents, and such that
the coding is read across the page, like a dump.

2. REF or NOREF--REF indicates that a symbol cross-reference table
is wanted with the generated IBMAP listing. NOREF suppresses this
print. REF is ineffective if the NOLIST option is used.

3. DECK or NODECK=-=-DECK indicates that a relocatable binary object
deck for this subprogram is desired. It will be punched off-line.
NODECK suppresses this punch output.

L. M90, M4, or M9L/2~-M9O instructs the compiler not to generate
any 7TO94 machine instructions in its compiled coding. MOL indicates
that the compiler may generate TO94 coding. M9L/2 generates TO9k
coding and EVEN pseudo-operations are treated as commentary.

5. XR3, XR4, XRS5, XR6, or XR7--This option dictates the number of
index registers for which the compiler is allowed to generate coding
in the compiled progrem. A minimum of three index registers must
be allowed. Index registers will be selected in the order: 1, 2,

3, 4,5, 6, T

‘ 7 September 1965 2-17

6. NODD, DD, SDD--These options refer to the debugging dictionary.
The standard option, NODD specifies no debugging dictionary is
desired. For option DD a full debugging dictionary is output.

The contents of the full dictionary are all symbols used in an
assembled program or for a FORTRAN IV program, all statement
numbers, all programmer-specified symbols, and all symbols gener-
ated by IBFIC. The option, SDD, provides a short debugging dic-
tionary. Only these symbols specified by the MAP pseudo-operation
KEEP are output for assembled programs. Statement numbers and
programmer-specified symbols are output for FORTRAN IV programs.

(6) $IBMAP Deck Name Count Options:
112134516]7i8|9}j10f{11{12]113]14]15]16 72

. COUNT
| $|1|B|MIA]P DECKNAME | | | | CPTIONS

Normally this card informs the system that the deck to follow is an
IBMAP symbolic or PREST deck to be assembled. The $IEDIT card may
be used to inform the system that an IBMAP symbolic or PREST deck
ready for compilation is located on a specified alternate input unit.

' A count of the approximate number of symbolic cards may be given,
starting in column 16. This helps to speed the assembly. It may
not exceed five digits. If a count is not given, a value of 2000 is
assumed. In this case, the options (if any) must be punched begin-
ning in column 16. There are eight options: (The standard options
are underlined.)

1. LIST or NOLIST--LIST indicates that an off-line assembly list-
ing is desired. NOLIST suppresses this listing as well as error
message print. (The LIST/NOLIST option also appears on the $IBFTC
card, but note that the standard option is reversed.)

2. REF or NOREF--REF indicates that a symbol cross-reference table
is wanted with the assembly listing. NOREF suppresses this print-
out. REF is ineffective if the NOLIST option is used. (The REF/
NOREF option also appears on the $IBFTIC card, but note that the
standard option is reversed.)

3. DECK or NODECK--DECK indicates that a relocatable binary object
deck for this subprogram is desired. It is punched off-line.
NODECK suppresses this punch output.

4. M9O, M9L, or M9L/2--M9C instructs the assembler to treat TO9L
instruction mnemonics as macros, the expansion of which are defined
within the system. M94 indicates that TO94 op-codes are permissi-

‘ ble. The M91+/2 option must not be used, nor may the resulting
binary decks be used on TO94% A or B machines. These machines are
Model I's

7 September 1965 2-18

5. RELMOD, ABSMOD or SYSMOD--REIMOD indicates that a relocatable
assembly is desired. ABSMOD indicates that this is to be an abso-
lute assembly. SYSMOD indicates that this is a special relocatable
assembly having absolute origins.

6. No() or ()oK--NO() indicates that parentheses are to be treated
as illegal characters in an IBMAP symbol. However, only a warning
is produced, and the assembly is not aborted. ()oK indicates that
parentheses are permissible characters in an IBMAP symbol.

7. MFTC or NOMFTC--MFTC indicates that the macro definitions cor-
responding to the FORTRAN built-in functions are to be supplied
for this assembly. NOMFTC indicates that these macro definitions
are not wanted.

§. NODD, DD or SDD--These options refer to the debugging diction-
ary. The standard option NODD specifies no debugging dictionary
is desired. For option DD, a full dictionary is output containing
all symbols used in the assembled program. Option SDD indicates
only a short debugging dictionary is desired. It contains only
those symbols specified by the MAP pseudo-operation KEEP.

(7) $IBLDR Deck Name Options:

1}2|3]415]6] 7]8 9 10 11 12[13]14]15} 16 72

$|li1{B|L|IDIR DECKNAME OPTIONS

Normally this card informs the system that a relocatable binary deck
follows or is to be obtained from the Library. The $IEDIT card may be
used to inform the system that a relocatable binary deck is located on
a specified alternate input unit. There are two options: (The standard
options are underlined.)

1. LIBE or NOLIBE--LIBE indicates that the deck named is obtain-
able from the system library. 1In this case, the entire object
program must consist of routines supplied via $IBLDR cards with
the LIBE option. A mixture of LIBE and NOLIBE within a job is
not permitted. NOLIBE indicates that the deck is scheduled next
on the standard input unit, or is obtainable from an alternate
input unit, if preceded by an $IEDIT card.

2. TEXT or NOTEXT--TEXT indicates that the text section (i.e.,
the actual instructions) of this deck is to be loaded. NOTEXT
indicates that the text section of this deck is to be ignored.

This permits the system to use dictionary sections of the deck
without consuming storage with its instructions. ‘

7 September 1965 2=-19

(8) $DATA:

11]231314}]51]6s6 72

$|ID|A|T] A

This control card indicates the beginning of a data file on the input
unit.

(9) $NAME:

1123451678 |9lojnf|i2fi3f{alis{isliz 72
$IN|IAIMIE OPTIONS

This control card may be used to change the name of a file or control
section. -Name changes may be required when: 1) the same name has
been used in different decks for two or more distinct file or control
sections, in which case one of them must be renamed with a distinct
name, and 2) two different names are used to refer to the same file
or control section, in which case one name is replaced by the other.

The variable option field consists of two alphameric names separated
by an equal sign, i.e., ABC = XYZ. The name on the left may be a
qualified external name which is to be replaced by the name on the
right. Files to be renamed must have the name and qualifier, if
specified, enclosed by quotation marks. A qualifier is defined as a
deck name, i.e., DK1 (ABC) = XYZ. If not qualified, external names
on the left are replaced by the name on the right whenever encountered.
If a name is qualified by a deck name, it is replaced by the name on
the right only in the deck named.

(10) $ENTRY:

112|314 [)5]6

N}
®
©
o

{12413 |14 {i5] 6 72
$|EIN|TIRI|Y NAME

This card, which is optional, governs the point in the object code

at which execution begins. If an $ENTRY card is not used, or if an
$ENTRY card with a blank name field is supplied, the loader will seek
the control section name {six periods) and transfer to it.
(NOTE: A FORTRAN IV main routine will have this name as its entry
point.) If the name cannot be found, the system will begin
executing the object program at the first entry point of the first
subprogram in the input deck. If execution is to begin at some other
point, an $ENTRY card containing a name punched beginning in column
16 must be supplied. This name may be an external name (i.e., it

7 September 1965 220

appears in some control section--an entry point) to which the initial
transfer is made, or it may be a deck neme, in which case, the initial
transfer will be made to the standard entry point of that deck.

(11) $DATE: As described in Paragraph 2.2.1.1 (1).

(12) $*: As described in Paragraph 2.2.1.1 (6).

(13) $PAUSE: As described in Paragraph 2.2.1.1 (7).

(14) $IBREL:

1213451617 72

$IJ'.‘BREL

This control card indicates that no more compilations or assemblies
follow on the System Input Unit. The IBJOB Processor Monitor then
reads in and transfers control to the Loader. The $IBREL card has the
effect of negating the SOURCE option on the $IBJOB card because no
further compilation or assemblies are performed after it is encountered.

(15) $IEDIT: .
314

112 516t 7] 8} 9(10]11}12]13]i4]I5]16 72

$]1|E{D]|I1]|T OPTIONS

This card instructs the system that a deviation from normal input pro=-
cedures is forthcoming. With it, an alternate input tape may be brought
into action and/or the presence of alter cards may be signalled. The
effect of an $IEDIT card continues until another $IEDIT card with
different options is encountered.

There are three options: (The standard options are underlined.)

1. gYSINl, SYSCK1l, SYSCK2, SYSLB2, SYSLB3, SYSLB4--This option
designates the I/0 unit on which the source, symbolic, PREST,

or relocatable decks may be found for each subsequent $IBFTC,
$IBMAP, or $IBIDR card encountered on SYSINl. Unless SYSIN1 is
the designated unit, all decks on the unit designated must be
prefaced with an $IBFTC, $IBMAP, or $IBLDR card, as appropriate,
on which the deck namematches that appearing on the $IBFIC,
$IBMA1)>, or $IBLDR card on SYSIN1l. (SYSIN1l is the standard input
unit.

g. SRCH or NOSRCH--SRCH indicates that the system must search

the alternate input unit to find en $IBFTC, $IBMAP, or $IBLDR

card with a matching deck name. (SYSIN1 must not be searched.) '
NOSRCH indicates that the designated alternate unit is correctly
positioned to read the next deck.

7 September 1965 2-21

3. ALTER or NOALTER: ALTER indicates that an alter deck will
be found on SYSIN1 immediately following all subsequent $IBMAP
cards until another $IEDIT card is encountered, or until the

end of this job. NOALTER indicates that there are no alter
cards.

(16)
]2

§OEDIT:
3

41516 |78 oj1ofmm|12{i3{14]15]16 72

$]0

E|ID}lI1|T OPTIONS

This card signals an impending change in the normal output operation.
With it, an alternate unit may be selected for off-line print, and/or

PREST

decks may be obtained. There are three options: (The standard

options are underlined.)

1. SYSOUl, SYSCK1, SYSCK2, SYSLB2, SYSLB3, SYSLB4--This option
designates the I/O unit to be used for off-line print output
for the remainder of the job, or until another $0EDIT card is
encountered. SYSOUl is the normal output unit.

2. PREST or NOPREST-~PREST indicates that a PREST deck for all

following symbolic input decks to the assembler is to be punched
off-line. Relocatable binary decks may also be obtained or de-

leted in the usual manner. NOPREST indicates that a PREST deck

is not wanted.

3. CPREST, NOCPR--CPREST indicates that a PREST deck for all
following source input decks to the compiler is to be punched
off-line. NOCPR indicates that a PREST deck is not wanted. If
both PREST and CPREST are specified in the $0EDIT card that pre-
cedes a source deck, both compiler input and output are written
off=line in PREST form.

NOTE: PREST is a BCD representative of a symbolic program as
supplied or as compiled by FCRTRAN. Insignificant blanks are
deleted. PREST decks are punched out in column binary card
format, but the information contained in each binary data word
is to be interpreted as BCD. PREST decks are identified by 2,
3, 4, 5, 7, and 9 punches in column 1. Relocatable decks (IBJOB
format--not FORTRAN II) will not have a 2 punch in column 1,

and there will be various combinations of 3, 4, and 5 punches to
identify various sections of the deck. If column 1 contains a

1 punch, it is not an IBJOB deck.

7 September 1965 2-22

(17) m *ALTER n:

112|3{4}15]16| 78 10 2131415 fisef1z 72
M *—"ALTER N

[(]

This is one form of alter cards that defines the exact point for making
modifications in a symbolic program. (This caerd is not strictly a
control card.) The alter point is found by combining m and n to form
a string of up to eight characters. This is matched against the label
punched into columns T73-80 of the symbolic deck being altered (ignoring
any leading blanks) or if a PREST deck is being altered, against the
instruction line label printed on the original listing. Any symbolic
cards following the *ALTER card, up to but not including the next
*ALTER or *ENDAL card, are inserted into the deck just preceding the
machine word corresponding to the matched label.

(18) m *ALTER n,k:
11213}als|e|718]9 [oluli2f3fiajisie]i17|18f19. 72
M .*_ AlL] T|IE|R N] Lk

This form of the *ALTER card matches labels mn and mk, and the original
coding from the line labeled mn to the one labeled mk, inclusive, is
deleted. If symbolic cards follow the ¥ALTER card (preceding the *ENDAL
card), they are inserted into this hole.

(19) *ENDAL:
8 |ofio] iz 13
¥e(n|pfa|L

The use of this trailer card is required to terminate an alter deck.

7 September 1965 2-23

2.2.1.3

SEE
PAR, 2,2.1.3

()
(2)
(3)
@)
(5)

IBLDR Control Card Description

All IBLDR control cards have a dollar sign ($) in column 1. Contro)
card function is punched in column 2 with no embedded blanks. Deck
name, if required, is punched beginning in column 8. Any additional

information required is punched beginning in column 16, with no em-
bedded blanks.

See Paragraph 2.2.1.2 for a discussion of $IBLDR and $ENTRY cards.
Although recognized by IBJOB, these cards are also passed along to
IBLDR for further processing. $LABEL cards may be placed anywhere
in the deck that IBJOB expects to find control cards, providing they
occur after the $IBJOB card. IBJOB recognizes $LABEL only to the
extent of making it available to the loader. $ORIGIN and $INCLUDE
cards may be placed immediately before any $IBFIC, $IBMAP, or $IBLDR
cards in the deck. Figure 2-4 shows the IBLDR control cards format.

1123 (4|5|6(7]|8j9|10|mt12{13{14(15{16|17(18]19 [20] 21
$|1({B|LID|R DECKNAME ORTIONS
$IE{N|T|R]Y OP:Tlo:NS
$|O|{R|I|G}|I]|N SY:MB:OLS OPTIONS
$|1|N|[c|L|ulD]E NA:ME:S
$|LIA|BlE|L : LA;BEL;LINlG

NOTE- coNTRoL CARD (I) 1S ESSENTIAL, (2) IS USED FREQUENTLY (3) THROUGH
(5) ARE USED OCCASIONALLY,

Figure 2-4. IBLDR Control Cards Format

7 September 1965 2-24

An individual description of the IBLDR control cards is as follows:

(1) $IBLDR Deck Name Options: See Paragraph 2.2.1.2(7T).

(2) $ENTRY Name: See Paragraph 2.2.1.2(10).

(3) $ORIGIN Symbol Options:

1{2]13}4|5|6]7]8]19|10fjII]|I12]13]14]15]16 72

S
slolrli1lc)i|N P

This card is used to define the beginning of each link of an overlay
job. Overlay is a feature which permits the execution or jobs which
exceed memory capacity. Several subprograms or sets of subprograms
may be relocated by the loader so &s to occupy the same portion of
core memory. Each such segment of the program (i.e., each link) is
recorded on tape, and during execution various links are automatically
called into memory as needed.

The symbol punched beginning in column 16 is a string of from one to

six alphanumeric characters. The six special characters ():,/. may

not be used. A symbol is mandatory on every $ORIGIN card. In addition ‘
to this logical origin symbol, there are three options: {The standard
options are underlined.)

1. Absolute Origin, Octal Location--To specify an absolute origin,
punch from one to five numeric characters indicating the decimal
memory location at which the following routine is to be origi-
nated. To specify octal iocation, punch an alphabetic ¢; follow-
ed by one to five digits representing the octal value.

2. 8YSUTz, SYSUT3, SYSLB2, SYSLB3, SYSLBU, SYSCK1l, SYSCK2, or
UT2, UT3, L[B2, IB3, LBL4, CKl, CK2~-This option specifies the 1/0
unit on which the following link is to be written. It is assumed
that the unit is in ready status and that it is used only to
contain- gverlay links during job execution.

3. REW or NOREW--REW indicates that the I/O unit containing
this link is to be rewound after loading each time this link is
called for during execution. NOREW suppresses these rewinds.

The operation of overlay is best illustrated by an example. At least
one subprogram is required in the job which remains in memory at all
times (it must not be overlaid). This subprogrem is link O or the
main link. The decks comprising link U are placed physically in front
of all other decks in the job. Following link O, an $ORIGIN card
appears; and it contains a symbol which the loader associates with ‘

7 September 1965 2-25

the next available memory location (or with the absolute origin, if
specified). 1In this situation, it is an $ORIGIN ALPHA card as shown
in Figure 2-5. Following this $ORIGIN card, the decks comprising any
one of the links issuing from this origin must appear. If two or more
links issue from the link just described, an $ORIGIN card with a new
origin symbol must appear next, and it must be followed by all the
decks for any one of the links originating at that point. Thus, the
correct positioning of $ORIGIN cards is important only for the first
occurrence of each origin symbol. Parallel links headed by $ORIGIN
cards containing symbols already defined may be placed anywhere in
the deck so long as each complete link is kept together and the defi-
nition of new origin symbols is not disturbed. However, the ordering
of decks will affect the order in which the links are written onto
tape. The various links may all be written on the same tape, or they
may be distributed among several tapes.

In Figure 2-5, link O consists of two decks not preceded by an $ORIGIN
card. Links 1, 4, 5, and 6 must each be preceded by an $ORIGIN ALPHA
card. Links 2 and 3 must each be preceded by an $ORIGIN BETA card.
Links 7 and 8 must each be preceded by an $ORIGIN GAMMA card. Links

9 and 10 must each be preceded by an $ORIGIN DELTA card. ILink O must
be followed by either link 1, 4, 5, or 6. Link 1, whenever it occurs
in the input deck, must be followed by either link 2 or link 3. Link
6 must be followed by link 7 or 8. Link 8 must be followed by link

9 or 10.

The subdivision of the object program into overlay links does not re-
quire any special coding since the system automatically handles the
loading of links as they are needed. However, there are certain obvi-
ous situations whick cannot be handled and must be avoided by the user.
For example, a routine in one link may not CALL a routine in another link
since this might induce an overlay which will wipe out the CALL.

Also, overlay is initiated only by CALL statements and function usage
(or the FORTRAN function subprogram type). A data reference to a sym-
bol contained in the control section of a routine within a dependent
link is permissible only if a preceding CALL or function reference has
guaranteed the loading of that link.

(4) $INCLUDE Neme 1 Neame 2 Name 3 ...:

213]4)5]6]7]18]9]0]ujr2f{13j14]is|i1e 72
${1|N|lCclL|U| D|E NAMEEI_E_EL?MEZ,

This card specifies that the decks and/or the control sections named
starting in column 1€ are to be included in the link in which this
$INCLUDE card appears, rather than in the link to which they would
normally be assigned. The names specified may be either deck names

7 September 1965

2-26

DECK 21 |
L}
LINK 18
DECK 18
LINK 8
DECK 19 DECK 2/
|
1
DECK 14 LINK 9
LINK 6 ORIGIN DELTA
DECK 15 DECK 16 DECK 17
: |
LINK 7
ORIGIN GAMM/ﬂ
DECK | DECK 2
. | DECK 12 DECK 13
I ' 1
LINK ¢ 1
LINK 5
DECK 9 DECK If =~ DECK Il
| LB
LINK 4
DECK 7 DECK 8
+
LINK 3
DECK 3
LINK I
DECK 4 \ DECK 5 DECK 6 |
|
1 T i
ommNALPHAl LINK 2

Figure 2-5.

‘ORIGIN BETA

Opcration of Overlay

T September 1965 2-27

(usually library subroutines) or real control sections names of non-
zero length (usually a block of data or coding).

If a library subroutine is specified, its deck neme, not one of its
entry points, must be given. Normally, all library subroutines used
by the job will automatically be loaded with the main link so that they
are available to all subsequent links. A library subroutine may, how-
ever, be assigned to a dependent link by means of an $INCIUDE control
card. A subroutine or control section may not be loaded in more than
one link. If it is called from more than one link, it must be loaded
in a higher level link that is available to all calling links. The
library routines .FPTRP, .LXCON, and .LOVRY must be allowed to load
with the main link.

(5) LABEL 'Filename' Serial Reel When Name:
1123 415|678 9)j10]I11l12]13{14]|15!116 72
$IL{AIBIE]|L LABELLING

This card is used to provide labeling information to IOCS when the
LABELS option of the $IBJOB card is exercised (see Paragraph 2.2.1.2
(5)2.). It is an exception to the usual control card format in that
all information must be supplied in the exact order indicated. The
three interior items--serial, reel, and when--are optional and may be
deleted. However, the punctuation is essential. There must always be
four commas, in addition to any that may appear in 'filename' or name.
No blanks are permitted from column 16 through the fourth comma.

1. 'Filename'--This is the symbolic name of the file to which
this information applies, enclosed between apostrophes. The first
apostrophe must be punched in column 16. Meximum length of this
item is 18 characters.

2. Serial--This is an alphanumeric field of five or less charac-
ters. Input labels are checked against this serial value, if
present. Output labels will contain this serial value, provided
the reel option is greater than one. Output serials, in the
absence of this option, are normally taken from the label already
present on the first output reel.

3. Reel--This is a numeric field of four or less characters. It
indicates the reel sequence number of the first reel of a file.
If omitted,; the sequence number is assumed to be zero for input
files, or one for output files. The actual reel sequence number
is adjusted at object time to reflect reel switching, and it is
checked in standard input labels.

7 September 1965 2-28

&. When--This field is used for checking a standard input label.
If it is omitted, the date is not checked. If it is present,
either of two forms msy be used. In the first form, the date is
represented by y/d, where y 18 two digits representing the year,
and 4 is the day of the year. Thus, December 6, 1963, would
appear as 63/340.

In the second form, a numeric field of four or less digits repre-
sents the number of days a tape is to be retained from the date
on which it was written. An attempt to write a labeled file on
this tape before the end of the retention period will result in
an on-line error message.

5. Name--This is a field consisting of 18 alphanumeric charac-
ters among which blanks are permitted. Input labels are checked
against this name, and output files are labeled with this name.
If completely blank, the label is not checked for input files,
or the existing label is retained for output files.

T September 1965 2-29

2.2.1.4

FMS Control Card Description

The $IBSYS card has $IBSYS punched in columns 1 to 6. All other FMS
control cards have an asterisk (*) in column 1. On the FMS identifi-
cation cards, columns 2-72 are available for punching optional infor-
mation. On all other FMS control cards, card function is punched be-
ginning in column 7. Blanks are permitted. On the * DATE card, 2
slashes and 2 digits for the year are required. The month and day may
each be represented by zero, one or two digits.

If an $IBSYS card appears in the deck, no other FMS control card may
appear between it and a $FMSYS card. In an FMS job, ¥ DATE, if used,
must be the first card in the deck with an * identification card im-
mediately following it. If the * DATE is not used, the * identification
card must be first. An ¥ identification card is mandatory for FMS runs.
* XEQ and/or * FORMAP, if used, in either order, must immediately follow
the * identification card.

The control cards * LIST, * LIST8, * CARDS COLUMN, ¥ CARDS ROW, ¥ ROW,
* LABEL, * LIBE, ¥ SYMBOL TABLE and * FAP apply to individual subpro-
gram compilations or assemblies. The source or symbolic deck for each
subprogram to be compiled or assembled must be preceded by any control
cards of this group which the user may want to include. They may be
in any order except the * FAP card which must immediately precede the
symbolic deck to which it applies.

* LIST, * LIST8, * LIBE, and * SYMBOL TABLE are ineffective for FAP
assemblies. Assembly listings are produced automatically without a
control card. The debug facilities are inoperative with FAP routines.
Source and symbolic decks with their control cards are placed in any
sequence behind the * identification, * XEQ and/or * FORMAP cards, but
before any debug, binary, or data cards which may appear in the job.

The * DEBUG card, if used, must be placed immediately behind the last
source or symbolic deck, if any, or behind the * identification, * XEQ
and/or ¥ FORMAP cards if there are no compilations or assemblies. Any
and all debug request cards are placed immediately behind the * DEBUG
control card.

Any binary decks to be loaded must be placed, in any sequence, behind
the debug request cards, if any, or behind the last source or symbolic
card if there are no debug requests, or behind the * identification,

* XEQ and/or * FORMAP if there are neither source nor symbolic nor debug
cards.

Any data to be read by the program from logical unit 2 must be preceded
by & * DATA card. The ¥ DATA card and its accompanying data deck must

7 September 1965 2-30

be placed behind all the above mentioned cards, i.e., following all
source, symbolic, debug, and binary cards. The DATA card is not
needed when there are non-execute runs, or when the object program
does not read from logical 2. The deck must terminate with an end-
of-file card (7 and 8 punches in column 1).

% comment and/or *PAUSE cards may be placed at any point in the deck
at which the system expects control cards, provided they occur behind
the ¥ identification card and ahead of any and all ¥ DEBUG, binary,
and/or * DATA cards in the deck, as the case may be. For chain jobs,
the source, symbolic, debug, and binary cards for each chain link &are
sequenced as described above, with the appropriate control cards for
individual subprograms and debug decks. A ¥ CHAIN card must be placed
in front of the deck for each chain link. These decks are sequenced
in the desired order and placed behind the ¥ XEQ card and in front of
the * DATA card, or end-of-file card if there is no * DATA card.
Figure 2-6 shows the PMS control cards format.

' 7 September 1965 2-31

SEEPAR, 2.2.1.4| 1 (2|34 |5|6(7|8|9|t0]|u|12|13{1a|15|16|17]18]19]20 [21

Mis|1|B|s|y]|s
(2) | ¥'| 1DENTIFICATION
(3) | ¥ X|E|Q
(4) | ¥ Flo|[rR|M|A|P
(5) | % LI |s|T
(6) {¥ L|lt|s|T|s
(7) [% C|A|R|D |s clo|L|u|mM|N
(8) | ¥ F|lA|P
(9) | ¥ IolalT|a
(10) | % DATEMM/DD/
() | ¥ s|yi{m|B L TlAalB|L|E
(12) | % DIE[B|U |G
(13) *-‘COMMENT

’ (4) j¥| Pla|uls |E
(15) | % LiA|B|E |L
(16) | ¥ clH|Aa |1l |N
a7) (¥ Lir e |e
(18) { ¥ clalr|pis] |r|o|w
(9) | ¥ R|oIw

NOTE" CcoNTROL CARDS (1) THROUGH (9) ARE ESSENTIAL; (10) THROUGH (14)
' ARE USED FREQUENTLY; (I5) THROUGH (I9) ARE USED OCCASIONALLY.

Figure 2-6. FMS Control Cards Format

7 September 1965 2-32

An individual description of FMS control cards is as follows:

(1) $IBSYS:
3|4

1]2

56| 7 72

s{1|B|sS|Y|S

IBSYS is called in, replacing FMS, and control is transferred to it.

(2) * 1Identification:
1]2 72

‘%- IDENTIF ICATION

This card is mandatory for any job which operates under FMS. Columns
2 to 72 may be filled with optional information which is reproduced
by the system on the output listing for that Jjob.

(3) *_ XEQ:
11213laf{s]|e|7]|8]9 |0 72
¥ x|E|Q

This card informs FMS that the following job is to be loaded and exe-
cuted after completing any compilations and/or assemblies for which
there are source and/or symbolic decks.

(4) * FORMAP:
i| 21 3] 4| 51 6f 7] 81 9]10]1i]i2{I3 72

¥ Flo|lr|M|A]|P

In an execution run, a memory map 1s printed off-line indicating names,
locations, and entry points for all subprograms in the job (including
library routines used), the extent of COMMON, and the amount of vacant
storage.

(5) * LIST:
it213]14)|516)17(|8]{9 [10]I1l 72

af LIifS}T

7 September 1965 2-33

The system is instructed to print a symbolic FAP listing of the FORTRAN
program following this card, after it has been compiled. The generated
listing is printed three columns of instructions per page.

(6) * LISTS:

1j2]3l4)5]6]7]|8l9]10]11}12 72

* LTS |T|8 R

Same as * LIST except that the listing is printed in two columns with
the octal representation of each instruction.

(7) * CARDS COLUMN:
l23456789!0”!2!314[5[6!7!8[972

¥ c|a|r|bp|s| |c|lofL|ulm|n

This card causes a column binary relocatable deck to be punched off-
line for the source or symbolic program following this card, after it
has been compiled or assembled.

(8) * FAP:
112134 }|5}|6]7]8191l]I0 72

e Flalp

This card identifies the symbolic deck that follows it to be assembled
as a machine language program by FAP,

(9) * DATA:
112134 |5]|6|7}58]9 {i0]il 72

¥ plajT|a

This card identifies those cards that follow as data cards to be read
during object program execution. It is not needed for non-execute
Jjobs, nor those requiring no data on logical 2.

7 September 1965 2-34

(10) * DATE:
i{2]3]4a]s5]e|7]efoofufiz]ia 1a]is]ie 17 [18 |19 72

3% DIA|T|E|M]M / o| o /' vl vy

The date supplied on this card is printed on each page of output
generated by the system for the job.

(11) * SYMBOL TABLE:

1{2]|314|s5[s6]7|8lolwinfiz]i3}ialislieji1z]|isfi9 72
% s|y|M|BjO| L T] AlB|L |E

This card causes the system to punch (off-line) a symbol table for
the FORTRAN source program following it after it has been compiled.
The symbol table is required by the debug package if debug requests
are to be embedded in this particular subprogram.

(12) * DEBUG:
1121314} 5f[6]|7]1819i10]111]12 72

e ple|B|uU|G

This card identifies the cards that follow as debug requests. The
interpretation of debug requests stops when a binary card, * DATA
card, or end-of-file is encountered.

(13) * comment:

112 72

% COMMENT

The contents of this card are printed on-line and off-line.

(14) * PAUSE:
1121314 51 61 7] 8] 9|10} 11112 72

ék PplAalulsl|E

This card causes the machine to halt. The job is continued by instruc-
tirg the operator to press the START button. Since all control cards
are printed on-line, columns 12-72 may contain a message to the
operator.

T September 1965 2-35

(15) * LABEL:
1121314} 5]6)j7|8]9f10]n{I2 72

¥ L|lAalB|E|L

The relocatable binary cards produced as a result of the compilation
or assembly of the deck following this card will be labeled and seri-
alized in columns T73-80. The label punched in columns 73=78 for a
FORTRAN compilation will be taken from columns 2-7 of the first card
of the source deck (excluding other control cards) provided this card
has a C in column 1. Ctherwise, the subprogram name is used (000000
for a main routine). For FAP assemblies, columns 2-7 of the page
title card will be used as a label. The cards will be serially num-
bered in columns 79 and 80, beginning with 00 and recycling when 99
is reached. However, if the label does not use all of columns 73-78,
serial numbering will occupy all unused columns at the end of the
label, recycling when 10"-1 is reached {(where n is the number of
columns available). Symbol tables and all subroutines obtained with
the deck {i.e., LIBE) will be labeled with their own names.

(16) * CHAIN (Ror =)
12314156789 (fiofl1i]i2 72
* clH]A|[I|N

This card identifies all cards that follow until another ¥ CHAIN, a
* DATA; or end-of-file is encountered, as a chain link. R is an
identifying label for the tape record which will contain this link,
and must be an integer greater than O and less than 32,7’68° T is the
actual unit designation of the tape on which this link is to be record-
ed. Units B2, B3, and Ak are the only ones which may be used. The
argument T in the * CHAIN control card may be one of these physical
unit designations, or one may use simply the digits 2, 3, or kL,
respectively. Either notation is acceptable. The argument T in the
CALL CHAIN statement within the program must use the external logical
unit designations for these tapes, namely 12, 13, or 4, respectively.

{17) * LIBE:
i1|2]3[a]s5]e]7]8lofi0oln 72

¥ Lii]|Bl|E

This card causes the Monitor to search the library following a com-
pilation, and punch out relocatable decks for any Library subroutine
required by the subprogram just compiled.

7 September 1965

2-36
(18) * CARDS ROW:
112!13j4}5(6|7}8]9(10!1l |12 113}14]15!'16 72
* C{AlR|D]S R} O}W

Row binary cards are punched off-line for the compilation or assembly
to which this control card is applied.
FORTRAN main routine, a nine card BSS loader will be punched out ahead
of the deck, and a transfer card at the end.
card has a 9 punch in column 1.)

(19) * ROW:

If the routine compiled is a

(A FORTRAN II transfer

112]3]4]5)]6

©

10

72

*

Same as CARDS ROW.

T September 1965 2-37

2.2.2

2.2.2.1

DECK STRUCTURE

Deck order is directly related to performance order. The first
function to be performed should have its cards before the second
function to be performed, and so on. The following sample decks
illustrate various operations to be performed under IBSYS or FMS
control.

FORTRAN IV--Compilations, No Execution

Routine XYZ is to be compiled for the 7094 Data Processing System.
A relocatable binary deck is output; nothing else. Since no options
are specified in the $IBJOB and $IBFTC cards, this is equivalent to
cards in which the standard options are punched; namely:

$IBJOB NOGO,NOLOGIC,NOMAP ,NOFILES ,MINIMUM, SOURCE , FLOW

and.

$IBFTC XYZ NOLIST,NOREF, DECK ,MOk , XRT,NODD

Similarly, in all following examples, where a standard option is

called for, it does not appear in the control card. The $DATE card
is always optional, but its inclusion is recommended.

((END—OF—FILE CARD) —\
((FORTRAN IV SOURCE DECK) /7\\\

(s18FTC xYZ
(s18508 /

((SEXECUTE 1BJOB

($PATE 110763 \
(sPAuSE
(($1D CO2T 5 BD543M,X5809, COMPILATION OF ROUTINE XYZ

(s1BSYS

J/

Figure 2-7. Sample FORTRAN IV Compilation, No Execution

7 September 1965 2-38

2.2.2.2 FORTRAN IV--Execution Run from Binary Decks

Execution run from binary decks begins with the subprogram, MAIN.
The programmer desires a storage map. His program reads data cards
from logical unit 2.

ﬂEND—OF—FlLE CARD)

QDATA CARDS)
($pATA
((SENTRY MAIN \

((RELOCATABLE BINARY DECK FOR SUBPROGRAM LAST)

($1BLDR LAST §\/\\
{ (RELOCATABLE BINARY DECK FOR SUBPROGRAM NEXT)
(($1BLDR NEXT)H
/ /\ J

((RELOCATABLE BINARY DECK FOR SUBPROGRAM MAIN) \

($1BLDOR MAIN

((RELOCATABLE BINARY DECK FOR SUBPROGRAM SUB) \ |/
(s18LDR suB
(($1810B GO, MAP,NOSOURCE \ /

Y

(SEXECUTE 1BJOB

($DATE 102063

e, \\\ /
rslasvs \))

Figure 2-8. Sample FORTRAN IV Execution Run from Binary Decks

T September 1965 2-39

2.2.2.3

Multiple FORTRAN IV Compilations and IBMAP Assemblies

Execution begins with the main routine, if any; otherwise, it begins
with SUBl. These routines are to be compiled/assembled for the 7094
DPS, using all seven index registers. There are approximately 550
cards to illustrate the IBMAP language routine which uses FORTRAN

macros. Do not consider symbols in parentheses as errors. A list-
ing of all subprograms except SUBl is wanted.

f (END—OF—FILE CARD)

((SOURCE DECK FOR FORTRAN IV SUBPROGRAM SUBN) \
($1BFTC SUBN LIST \

((SOURCE DECK FOR FORTRAN IV SUBPROGRAM SUB3)
($IBFTC SuB3 LIST

((SYMBOL IC DECK FOR IBMAP SUBPROGRAM SUB2) /\\ |/

(s18MAP suB2

550, MFTC, ()OK

/

((SOURCE DECK FOR FORTRAN 1V SUBPROGRAM SUBI)

($1BFTC suBi

($18J0B GO

(SEXECUTE 1BJOB
((spATE 122563
(sPause
($1D cosT 10 CH543M
($1BsSYS

\

N\

\
N

/

Tigure 2-9. Sample Multiple FORTRAN IV Compilations and IBMAP Assemblies

7 September 1965 2-40

2.2.2.4

Figure 2-10. Sample FORTRAN IV Compilations, IBMAP Assemblies, Load Binary Decks

FORTRAN IV--Compilation, TBMAP Assemblies, Ioad Binary Decks

This deck performs several functions, such as 1) FORTRAN IV compil-
ing, 2) IBMAP assembling, and 3) loading relocatable binary decks.
It executes the object program beginning with subprogram Ph. Data
from logical 2 are read during execution. A storage map and logic
listing are desired, as well as a printout of the symbol cross-
reference table for all compilations and assignments; and no punched
output for routine P3 are desired. Only 3 index registers may be
used when compiling (assembling) for the 7094 DPS. No FORTRAN
macros are desired in IBMAP routine P5; they are desired for routine
P6. A PREST deck is to be punched for PS5, in addition to the re-
locatable binary deck.

(((END—OF—FILE CARD)
((DATA CARDS)

((spaTa -
rSENTRY Pa
{ (SYMBOLIC DECK FOR IBMAP SUBPROGRAM P6)

(($1BMAP P& MFTC
(so:on’ NOPREST

/

ﬁSYMBOLIC DECK FOR IBMAP SUBPROGRAM P5)
$1BMAP P5

(‘.-OEDIT PREST

/

{ (RELOCATABLE BINARY DECK FOR_SUBPROGRAM P4)

 siaLor pa
((SOURCE DECK FOR FORTRAN IV SUBPROGRAM P3)
(SIBFTC P3 REF ,NODECK ,XR3,LIST |

((SOURC(DECK FOR FORTRAN |V SUBPROGRAM P2)

($EXECUTE __ $1BJ0B
{ SDATE 101063
((spause
(310 co2To60 TDS43M

l $18SYS

a

{s18FTC P2 REF XR3,LIST
((RELOCATABLE BINARY DECK FOR SUBPROGRAM P1)
(siBLOR PI
(18108 LOGIC , MAP . GO

q

7 September 1965 2-41

2.2.2.5 FORTRAN IV-~Execute Programs from Binary Tape

A programmer has his tape containing many previously compiled or
assembled subprograms, with a suitable control card preceding each
routine. He may want to select five of these routines which are
interdependent and execute them beginning with the one named STARTX.
The decks for STARTX, ORBIT, and INTEG are known to be consecutive
on this tape. Do not load routine DUMMY. However, it is called to
define its COMMON definitions, ete., in memory ahead of all other
routines in the job. Data cards are to be read from logical unit 2.

(((END—OF—FILE CARD) \
((DATA cARDS)
(spATa ' \
{ SENTRY STARTX \
{ $1BLDR INTEG \
($1BLDR ORBIT \
‘ ((siEDIT syscki \

r$ IBLDR STARTX

($18LDR DIFCOR

{ $1BLDR DUMMY NOTEXT \
($IEDIT SYSCK!,SRCH \ |/

(s1BJOB GO

(SEXECUTE 1BJOB y,
(($PAUSE MOUNT TAPE NO.2302 ON UNIT A5, SET DENSITY LOW. \ L/

(($1D COIP 25 HH547C

(s18SYS \\ /
%

. Figure 2-11. Sample FORTRAN IV Execute Programs from Binary Tape

7 September 1965 2-k2

2.2.2.6

FORTRAN IV--Modify PREST Decks and Execute

A programmer has & symbolic deck for subroutine FLAP and & PREST
deck for subroutine CLAP on alternate tape No. 2300. In addition,

a PREST deck for subroutine WHAP and a relocatable deck for subrou-
tine SLAP are to be included with the input deck. There are ALTERs
for FLAP and WHAP, and the routines ere to be loaded in this order--
WHAP, FLAP, CLAP, SLAP. No punch output is desired except a PREST
deck for FLAP. Execution is to begin with the first entry point of
routine WHAP. No input is read from logical 2 during execution.

(((END-OF—FILE CARD)

r(RELOCATABLE BINARY DECK FOR SUBROUTINE SLAP)
‘ $1BLDR SLAP
‘ $IEDIT

((31BMAP CLAP 8000, NODECK
(SIEDIT SYSCK2

(a ENDAL
((* ALTER 88,92
{ $1BMAP FLAP 7732, NODECK

(soeoit PresT
((S1IEDIT __ SYSCK2,ALTER \
((SPAUSE IF BS IS ALL SET UP, PRESS START, \ Y
(C’REST DECK FOR SUBROUTINE WHAP)
(* ENDAL
(Ticks TIX___ TICS, 1,1 ___NEW INSTRUCTION TO BE INSERTED \
(2 *ALTER 60,61 DELETE LINES 260, 26!, INSERT FOLLOWING
(* ALTER 30,34 DELETE LINES 30 THRU 34 \
(STO THAT _ NEW INSTRUCTION TO BE ADDED

{ $IEDIT - ALTER

CLA___ THIS Ew ARDED \)
#ALTER 17 ADD THE FOLLOWING BEFORE LINE 17)
((S'BMAP WHAP 3000,NODECK \

((sis108 Go P
(SEXECUTE 1BJOB P
(sPause ¢
(3 * COMES TO THE NEXT HALT, g

r$‘ MOUNTED, HIGH DENSITIED AND READY WHEN THE MACHINE

($ * DEAR OPERATOR, TAPE 2300 GOES ON B5, PLEASE HAVE

~

($1D0 G30T 05 GC543M 4
$1BSYS \ i/

—/

Figure 2-12. Sample FORTRAN IV Modify PREST Decks and Execute

7 September 1965 2-43

2.2.2.7 FORTRAN IV--Overlay Job

For simplicity, it is assumed that relocatable binary decks are
available for all subprograms. However, this is not a requirement.
The main link (or link 0) consists of two decks 5 ZORBA and GLESPY.
Each of two dependent links is to begin immediately after the main
link. Of these, link 1 consists of two decks, CASEY and MAGGIE; and
link 2 consists of one deck, KILDAR. Links 3 and 4 are each to
occupy core immediately following KILDAR. Link 3 consists of one
deck, SPOCK; and link 4 consists of two decks, JEKYLL and HYATT,
plus the library FIMD, FLOG, and FATN. Links 1 and 2 are to be
written on SYSUT2; links 3 and 4 on SYSUT3. During execution,
SYSUT2 is to be rewound each time after link 2 is loaded, but not
after link 1 (since the tape will be properly positioned to read
link 2). Similarly for SYSUT? and links 3 and 4.

LEND—-OF ~F ILE CARO |
{ SINCLUDE FDMD.FLOG,FATN

FWELOCATABLE OINARY DECK FUR ROUTINE HYATT
(s18L0R wyaTT

‘ tRELOCATABLE BINARY DECK FOR - JUTINE JEKYLL 1
{ SIBLOR JEKYLL
((ORIGIN DARWIN REW,SYSUT3

(AR[L.OCATAELE BINARY DECK FOR ROUTINE SPOCK
[51BLOR sPoOCK
(soricin DARWIN, SYSUT3

QRELOCATABLE BINARY DECK FOR ROUTINE KILDAR)

{ 518LDR KiLDAR
(soriGin SPECIE, REW
{ (RELOCATABLE BINARY DECK FOR ROUTINE MAGGIE !

{518LDR MAGGIE

(lHELOCATAELE BINARY DECK FOR ROUTINE CASEY)

$1BLDR CASEY

‘ $ORIGIN SPECIE

(IRELOCATAELE BINARY DECK FOR ROUTINE GLESPY)

LSIBJOE GO, NOSOURCE

((sexecuTE 18J08.
((sbate cio264

{ spause
(slo COIP |5 0$543S
S$IBSYS

{ 51BLOR GLESPY
{ (RELOCATABLE BINARY DECK FOR ROUTINE ZORBA)
{ 518LDR ZORBA |

Figure 2-13. Sample FORTRAN IV Overlay Job

7 September 1965 2-hh

2.2.2.8 FORTRAN IV--Debug Execution

The deck structure specifies that the main program MAIN and the
subroutine SUBR, written in FORTRAN IV source language, are to be
compiled and executed. PFurther, the debugging option has been
specified. Whenever statement 20 in the main program or statement
12 in the subroutine are executed, control is transferred to the
debug package. At this time, BETA or GAMMA are dumped and control

is returned to the calling routine.

CEND—OF—F!LE CARD

A

C(FORTRAN 1V SOURCE DECK)

CslBFTC SUBR SDD

/

((FORTRAN 1V SOURCE DECK)

($1BFTC MAIN SDD

NN

DEND
(DUMP GAMMA
NAME X1 = NEW (K)

®* DEBUG SUBR 12 \
(bump BETA
((NAME Al=NEW (F)
(* pEBuG MAIN 20

(($1BDBL TRAP MAX =75, LINE MAX =10

($IBJOB GO

($ExECUTE 1BJOB
(soATE 71965
(sPAUSE

(($J0B C02T060 TDS543M

((s1BSYS

/

/

_/

Figure 2-14. Sample FORTRAN IV Debug Execution

\
®

7 September 1965 2-45

2.2.2.9 FORTRAN II--Execute

The decks of binary cards are loaded and the program executed. The
PAUSE card is required by operations. It causes a halt to occur,
during which time the programming may inform the computer operator
of any necessary action he must take.

(END—OF—FILE CARD 7—8 PUNCH COLUMN |

(BINARY PROGRAMS \
PAUSE
== \
* IDENTIFICATION (NAME, PROJECT NO. & EXTENSION) \
(* DATE 12—-25-65 \\

’ Figure 2-15. Sample FORTRAN II Execute

7 September 1965 2-h6

2.2.2.,10 FORTRAN IT--Compile

The FORTRAN IT program is compiled. The output requested is a relo-
catable column binary deck to be punched off-line and a FAP listing

of the program along with the octal representation of each instruc-
tion.

fEND—OF—FILE CARD 7—8 PUNCH COLUMN 1

{%ORTRAN PROGRAM WITH END CARD \tt>
(i‘f LISTS8
(* CARDS COLUMN
(* PAUSE \\\
(17’ IDENTIFICATION CARD (NAME, PROJECT NO, & EXTENSION) \\\
<

DATE 12—-25-65

Figure 2-16. Sample FORTRAN II Compile

|
. T September 1965 2-L7

2.2.2.11 FORTRAN II--Compile and Execute

The FORTRAN II source language program is to be compiled and exe-
cuted. A symbolic FAP listing of the program is required. Row
binary for the compiled FORTRAN main routine along with a nine-card
BSS loader deck are to be punched out off-line. During the execu-

tion of the object program, information contained on the data cards
is to be read in.

fEND—OF—FILE CARD 7—8 PUNCH COLUMN 1|

(* DATA DECK \
(* DATA
(FORTRAN PROGRAM WITH END CARD
o [x

LIST8 (OR LIST)
(* CARDS COLUMN
(* PAUSE

(* xEea \
{ * IDENTIFICATION CARD(NAME, PROJECT NO, ,& EXTENSION) \
f* DATE 12-25—65

‘ Figure 2-17. Sample FORTRAN II Compile and Execute

7 September 1965 2-48

2.2.2.12 FORTRAN II--Compile and Execute with Binary Subroutines

The FORTRAN program is to be compiled and the deck(s) of binary
subroutines are to be loaded before execution of the program. A
FAP listing is requested and a relocatable column binary deck of
the program is to be punched off-line. The binary subroutines must
be in column binary form.

(END—OF—FILE CARD 7—8 PUNCH COLUMN 1

(BINARY ROUTINES
* COMMENT CARD
(FORTRAN PROGRAM WITH END CARD
(* LISTS8

ﬁ CARDS COLUMN
ﬁ PAUSE
* XEQ
(* IDENTIFICATION CARD (NAME, PROJECT NO, & EXTENSION)
(* DATE 12—25-65
P/
- _J

Figure 2-18. Sample FORTRAN IT Compile and Execute with Binary Subroutines ‘

7 September 1965 2-h9

2.2.2.13 FORTRAN IT--Compile, Assemble, and Execute

The FORTRAN II source language program is to be compiled. The
following FAP language program is to be assembled. The complete
object program is to be executed during which time the data cards

are loaded. A FAP listing and a relocatable column binary deck are
requested.

(END—OF—FILE CARD 7—8 PUNCH COLUMN |

(THIS 1S DATA PUNCHED IN CARDS
(* DATA \

(FAP DECK WITH END CARD

[* FAP
(> CARDS COLUMN
(* COMMENT CARD \
{ FORTRAN PROGRAM WITH END CARD
(* LisTs

(* CARDS COLUMN ’
(* PAUSE %

(* XEQ
(* IDENTIFICATION (NAME,PROJECT NUMBER, AND EXTENSION) %

(* DATE 12-25-65 —\\ /

TN

Figure 2-19. Sample FORTRAN II Compile, Assemble, and Execute

7 September 1965 2-50

2.2.2.,14 FORTRAN II--Compile, Execute, and Debug

The FORTRAN II program is to be compiled and executed. A symbol
table, required for debugging,and a memory map are requested. The
debugging option is specified and will occur at statement 60 in the
FORTRAN program. The variable MA and MB are to be dumped the first
time statement 60 is executed up to a maximum of four times.

{ END—OF—FILE CARD 7—8 PUNCH COLUMN 1

(60 DUMP 1,45 MA, MB(i-120)
/(N (SUBPRGGRAM NAME, IF OMITTED MAIN PROGRAM) \
(* DEBUG \

14 FORTRAN i1 PROGRAM WITH END

(* PAUSE \
(* XEQ
(* FORMAP
(*‘ SYMBOL TABLE
(* IDENTIFICATION (NAME, PROJECT NUMBER, EXTENSION)
(* DATE 12-25-65 \ P

Figure 2-20. Sample FORTRAN II Compile, Execute, and Debug

. T September 1965 2-51

2.2.3 PROGRAMMING AIDS

This paragraph presents to the programmer tips and techniques as well
as precautions to be considered while performing programming functions.
These programming aids should be of help to the programmer in his
utilization of the TO94 FORTRAN system.

2.2.3.1 FORTRAN II

(1) FORTRAN II Diagnostic: The FORTRAN II double-precision square
root produces a diagnostic when given a negative argument and exe-
cution is terminated. The reaction to double-precision division by
zero has been modified such that a diagnostic is printed off-line,
but the program is continued. The quotient will be set equal to the
largest DP value the TO94 can represent (i.e,, MSH = 377 7777777778,
LSH = 34l TTTTTTTTTg) .

(2) FORTRAN II Dump Routines: The FORTRAN II dump routine attempts
a recovery if a tape check occurs during the dumping process. This
applies to PDUMP, as well as DUMP, It also will produce dumps of B

‘ Core for programs which use 65K. The programmer may call both B Core
(or a portion thereof) using CALL DUMP or CALL PDUMP by specifying
formet code 5, 6, 7, or 8 instead of 0, 1, 2, or 3, respectively.
Multiple sets of arguments may be used within the CALL, but all re-
quests from A Core should be given first. Once a reference to B Core
is encountered in executing any such call (scanning left to right),
all requests to the right will be taken from B Core regardless of the
format code given. B Core dumps may also be initiated from the con-
sole by depressing Key 19.

(3) . JODINE Disk Routine: A disk routine, IODINE, is available from
the FORTRAN II system library. There is a writeup outlining its usage.
The explicit programming standards for the use of disk exist. Users
of IODINE (or any other disk I/O routine) must be aware of these
standards. (See DSD Memorandum, "1301 Disc Standards", dated L/27/6L.)

(4) UMPIOT: A version of UMPINT compatible with FORTRAN IV and IOCS
exists on the system library under IBJOB. It is used for both FORTRAN
IT and IV. UMPIOT has been in existence on the FORTRAN II library.
(see Paragraph 2.5.1 for complete description.)

7 September 1965 252

2.2.3.2 FORTRAN IV

(l) Accuracy of FORTRAN IV Library Mathematical Subroutines: There
is available a set of accuracy estimates for the mathematical sub-
routines in the FORTRAN IV library (IBLIB). These estimates are
derived from test results using in many cases a large number of
selected points in the range of each subroutine. The following
contains these estimates for most of the single precision, double
precision and complex routines in the library.

| l. Single Precision

a. XPI/Exponential-FXPT Base~FXPT Exponent--Tests run for

2% vhere X = 1,2, , 27 gave a relative errora 1 x 1078 .

Tests run for 10° where X =1, 2,, 10 showed no error

b. XP@/Ezponential-FLPT Base-FXPT Exponent-~Tests run for

10* where X =+ 1, + 2, «...., + 33 gave a maximum relative

error = 4 x 107®

c. FXP3/Exponential-FLPT Base-FLPT Exponent--Tests run for

o where X = + 1, + 2,, + 39 gave a maximum relative

error = 3 x 1077

d. EXPF/Floating Point Natural Exponential--Tests run for a

larger number of selected points gave a relative error:

~ 2 x 107 |X| < 10
~ 5 x 107° 10 < |X| < 65
~ 5 x 1077 65 < |X| < 88

e. FTDG/Floating Point Logarithm--Tests run for a large number

of selected points in the range 1072® < x < 10°® yielded a
relative error = 1 x 10, except in the neighborhood of

X = 1, where the absolute error was = 1 x 10~

7 September 1965

2-53

FATN/Floating Point Arctangent--ATAN(X), Tests run for a
larger number of selected points in the range]X[< 10000

gave a relative error ~ 1 x 107°

‘For values of X of the order 10™*, ATAN(X) = X

ATAN2 (-YZ-.')’ Tests run for Y

=2M - 1, M=+1, +2, ..c.., + 10
Z=+1,+2, .o, , + 60 and
Tests run for Y =.2M, M = + 26, + 27, ; * Sk
Z=+ 6L, + 62, » + 100 gave a

relative error ~ 1 x 10~

FSCN/Floating Point Sine and Cosine--Tests run for SIN(X)
and COS(X) for a large number of selected points with
0 < X < /2 gave an absolute error ~ 1 x 10 for SIN(X)

and an absolute error ~ 5 x 102 for C0S(X)

FSQ,R/Floating Point Square Root--Tests run for a large
number of selected points in the range 10°% < x < 10°®

gave a relative error ~ 1 x 107°

2. Double Precision

a.

FDX1/Double Precision and Complex Exponential Functions--FDX1,

Tests run for 10° X = + 1, +2, cc0nn 5 * 33 gave a maximal
relative error ~ 6 x 10718

CXFl, Tests run for (10 + 10i)™ where X =+ 1, + 2, , + 33,
gave a relative error ~ 1 x 10™® for both the real and imaginary

rarts of the result.

FDXQ/Double Precision Expornential Function--Tests run for a

large number of selected points with bases 2, 10, e, gave a
relative error~ 9 x 107® for |X|] < 10 and a

relative error~ 7 x 107'® for 10 < x| < 65

7 September 1965

3-

f.

2-5k

FDXP/Double Precision Natural Exponential Function--Tests

run for a large number of selected points gave:
relative error ~» 7 x 107*® for x| < 10
65

relative error s 5 x 107*® for 10 < |X| <
relative error ~ 5 x 107* for-70< X < 88

FDSQ/Double Precision Square Root Function--Tests run for
a large number of selected points in the range 1072° <
X < 107 gave a relative error ~ 1 x 10738

FDLG/Double Precison Iogarithmic Function--Tests run for

a large number of selected points in the range 1072° <

X < 107°® gave a relative error 5 x 107*® except in the
neighborhood of X = 1, where the absolute error was
~ 3 x 107°

FDSC/Double Precision Sine and Cosine Functions--Tests

run for values of X = (30n)° n =0, 1,2,.....,12 gave

a maximal absolute error = 5 x 10738

Complex

a.

FCAB/Complex Absolute Value--Tests run for a large

number of selected points gave a relative error
~ 3 X 10® whenever the relative error in }Y(or }Y—(was
<1lx 107

FCLG/Complex Natural Logarithm--Tests run for a large
number of selected points in the range 1 < X, Y < 1000

gave a relative error ~ 4 x 10 in the real part and
~ 1 x 10 in the imaginary part of the result (provided

the relative error in % or % was < 1 x 107°)

FCSQ/Complex Square Root--Tests run for & large number
of selected points in the range 107° <X, Y < 10°®

gave a relative error ~s 3 x 10™® whenever the relative

error in gﬁ was < 1 x 10 and no overflow or underflow

occurred upon squaring of X and/or Y.

7 September 1965 2-

2.2.3.3

U
Ut

(2) Binary Mode Tape Operations: In FORTRAN IV, where the state-
ments REWIND i and/or BACKSPACE i are used to manipulate binary mode
tepes, it was necessary to add 30,0 to the logical unit number. For
example, to WRITE (17) ... , REWIND 47 was required when using
Version 8. This is not required under Version 12.

(3) Punch Statement--FORTRAN IV: FORTRAN IV punch statements will
produce card decks off-line. That is, card images will be recorded
on the output tape and will be recognized as such by the 1401. The
1401 must backspace and reread each time a mode change 1s encountered.
In the interests of off-line efficiency, group punching operations
together whenever practical.

(4) DUMP/PDUMP Routine: The DUMP/PDUMP routine under IBJOR has an
additional entry point to permit the programmer to obtain a full core
dump (32K) within FORTRAN IV programs. This is accomplished by exe=-
cuting the statement:

CALL FPDUMP (A, B, I)

where A and B are dummy arguments and may be any variable names defined
within that subprogram. I is the format code (0, 1, 2, or 3).

(5) 1BSYS Debug: Version 12 provides the FORTRAN IV feature of input-
output without explicit LIST and FORMAT, as described in IBM manual
C28-6377. Version 12 also incorporates the debugging facilities de-
scribed in the IBJOB manual C28-62L7-U4, and in the supplementary
debugging manual C28-6362-1. An additional tape, B10, is required
when debugging features are used, The programmer should indicate B1l0O
on his job request card. This unit designation may be reassigned if
necessary (e.g., for using debug in programs which may be using logical
20, or in which there are no free drives on channel B). Note, however,
that debug refers to this unit as SYSCK2, which is also an optional
overlay tape. Conflicts here can be resolved by changing the choice

of the overlay tape.

(6) UMPLOT: A version of UMPIOT compatible with FORTRAN IV and IOCS
exists on the system library under IBJOB. UMPIOT has been in existence
on the FORTRAN II library. (See Paragraph 2.5.1 for complete descrip-
tion.)

65K Dump Routine--Operating Instructions

Operating instructions for the FORTRAN system tape dump routines are
as follows:

7 September 1965 2-56 .

a. format and limits in keys of console

b. lower limit in decrement

¢. upper limit in address

d. format in keys 1 and 2 as follows:
Operation Key 1 Key 2
octal up up
octal with mnemonics down up
floating peoint up down
decimal integer down down

Key 20 down indicates that another dump request is to follow. The
7094 will stop with HTR 67344 to allow the keys to be reset. When
key 20 is up, B CORE is dumped. The dump from B CORE will be in the
same format as the last dump from A CORE,

A zero in both the address and the decrement causes A CORE and B CORE
to be dumped. To dump only B CORE, put key 19 down (without key 20
down) when the last portion of A CORE is dumped.

2.2.3.4 7094 Machine Language I/O .

All programming shortcuts on the 7090/94 Mod I are not applicable

on the 7094 Mod II. On the T090/94 Mod I, the non-data-select in-
structions (BSR, BSF, REQ, RUN, and WEF) require only that the channel
and unit be specified. On the TO94 Mod II, the full address is re-
quired. For example, to manipulate unit B6 with an instruction on

the T7090/94 Mod I, the octal configuration 2006 in the address is
sufficient. However, on the TO94 Mod II, the full address (2206 or
2226 octal) must be given. Otherwise, the machine will hang up.

Normally, the correct address is generated by the assembly program

(e.g., if REWB 6 is written). If the progremmer wants to compute

a variable unit address to store in an instruction written, for ex-

ample, REW*¥, the program must supply the full address in order for
it to run properly on the TO94 Mod II.

2.2.3.5 Channel Tape Assignments

Under IBSYS, B(l), the first available unit on channel B is B5. A(l)
is A5 and C(1l) is Cl. The system symbolic unit references are listed
below. The BlO unit is required when the debug package is specified.

Al SYSLB1; A2 SYSIN1l; A3 SYSOUl; AL sysuTi
Bl SYSUT2; B2 SYSUT3; B3 SYSUTL; B4 SYSPP1l; BlO SYSCK2 ‘

7 September 1965 2=-57

BIBLIOGRAPHY

This section provides the user access to the list of documents describ-
ing the major components of the IBM 7090/709h FORTRAN Operating System.
For each document there is provided an abstract along with a table list-
ing each document (Table 2-3) and a form-number index of each document
(Table 2-4) for cross-referencing purposes.

Table 2-3. TO94 FORTRAN Documentation Listing

PARAGRAPH FORM NO. PAGE NO|
IBM 7090/7094 SYSTEMS REFERENCE LIBRARY 2-59
TO94 Data Processing System Configurator A22-6689 2-59
TO94 Model II Configurator A22-6THL 2-59
MACHINE SYSTEM 2-60
TO94 Data Processing System--Principles A22-6T703 2-60
of Operation

IBM TO94 Model II Data Processing System | A22-6T60 2-60

IBM 729, T330, and 727 Magnetic Tape A22-6589 2-60
Units=-~Principles of Operation

IBM 1301 and 1302 Disk Storage: A22-6T784 2-60
Sequential Data Organization

IBM 1301 and 1302 Disk Storage, Models A22-6T85 2-61
1 and 2, with the 7090, 709k, and
TO94 Model II Data Processing Systems

PROGRAMMING SYSTEMS 2-62

Catalog of Programs for IBM Data C20-8090 2-62
Processing Systems-~-KWIC Index

IBM T090/TO94 Programming Systems: €28-6235-3 2-62
FORTRAN II Assembiy Program (FAP)

IBM 7090/709% Programming Systems: €28-6311-3 2-62
Macro Assembly Program (MAP)

COBOL 2-63
COBOL--General Information Manual F28-8053 2-63
IBM T090/7094 Programming Systems: IBJOB | J28-6260 2-63
Processor Part 5: COBOL Compiler (IBCBC)

FORTRAN 2-64
IBM 7090/7094 Programming Systems: C28-6054 2-6L

FORTRAN II Programming

7 September 1965 2-58

Table 2-3.

TO94 FORTRAN Documentation Listing (Cont'd)

PARAGRAPH FORM NO. PAGE NO.

2.3.5.2 IBM 7090/7094 Programming Systems: C28-6606-6 2-6k
FORTRAN II Operations

2.3.5.3 IBM 7090/T7094 FORTRAN IV Compiler (IBFTC)| €28-6376 2-64
Replacement: Specifications and
Language Additions

2.3.5.4 FORTRAN F28-80Tk4-3 2-64

2.3.5.5 IBM T7090/T7094 Programming Systems: C28-62T4 -4 2-65
FORTRAN IV Language

2.3.5.6 IBM T090/TO94 IBSYS Operating System: C28-6275-4 2-65
IBJOB Processor

2.3.5.7 IBM 7090/T094 IBSYS Operating System: c28-6362-1 2-65
Specifications for IBJOB Processor
Debugging Package

2.3.5.8 7090/7094 PROGRAMMING SYSTEMS: IBJOB c28-6331 2-65
Processor, Overlay Feature of IBLDR

2.3.5.9 IBM T090/TO94 IBSYS Operating System: C28-6345-2 2-65
Input/Output Control System

2.3.5.10 IBM 7090/T7094 IBSYS Operating System: C28-6364-3 2-66
Utilities with

N28-0125-D

2.3.5.11 IBM T7090/7094 Generalized Sorting c28-6307 2-66

- System: T090/TO9% Sort

2.3.5.12 IBM T090/7094 IBSYS Operating System: C28-6248-2 2-66
System Monitor (7TBSYS)

2.3.5.13 IBM 7090/7094 IBSYS Operating System: c28-6355 2-6T7
Operator's Guide

2.3.5.14 IBM T090/T094 IBSYS Operating System: C28-6386-3 2-67
Symbolic Update Program--Preliminary
Specifications

2.3.5.15 IBM 7090/7094 FORTRAN IV Language: C28-63T7 2-67
Input/Output without Explicit
List and Format

2.3.6 INSTALLATION SUPPLIES 2-68

2.3.6.1 7094 Reference Card X22-6691 2-68

2.3.6.2 COBOL Program Sheet X28-1464 2-68

2.3.6.3 COBOL Reference Card X28-1520 2-68

2.3.6.4 IBM TOLO/L44-T090/94 Symbolic X28-6333 2-68
Language -Coding Sheet

2.3.6.5 FORTRAN Coding Form X28-7327 2-68

T September 1965 2=59

2.3.1

2.3.1.1

2.3.1.2

IBM 7090/TO94 SYSTEMS REFERENCE LIBRARY

7094 Data Processing System Configurator
Form A22-6689

This is aschematic drawing depicting the overall TO94 Data Processing
System. Whenever new features are incorporated for the TO9L system,
these changes will be reflected in the drawing via publication change
notices.

IBM 7094 Model II Configurator
Form A22-6T6L

This is a schematic drawing depicting the overall TO94 Model II Data
Processing System. Whenever new features are incorporated for the
TO94-II system, these changes will be reflected in the drawing via
publication change notices.

7 September 1965 2-60

2.3.2 MACHINE SYSTEM

2.3.2.1 7094 Data Processing System--Principles of QOperation
Form A22-6T03

This manual explains in detail the computer instructions, commends,

and orders required for the operation of the TO94 system. In addition,
it provides information about the units associated with the TO9L system.
It expounds upon the use of the IBM 1301 Disk Storage, the IBM 141k4-6
Input/Output Synchronizer, and the IBM T340 Hypertape Drive; discusses
the IBM 7909 Data Clannel Interrupt features; and presents operating
techniques for the Data Channel and Operator consoles.

2.3.2.2 IBM 7094 Model II Data Processing System (Bulletin)
Form A22-6T60

This bulletin describes the mein features of the 7094 Model II Data
processing System. It contains a sample instruction sequence to
illustrate the reduction of core storage cycles through extended
sequence overlap operations. It also includes a listing of instruction
cycle changes and a table of instructions that can be overlapped.

2.3.2.3 IBM 729, 7330, and 727 Magnetic Tape Units--Principles of Operation
Form A22-6589

This manual presents a complete description on the use of the various
magnetic tape units. It covers the procedures for tape unit load and
unload, tape error recovery and handling of tape during system usage;
principles of writing and reading coded data on magnetic tape; operation
of keys and lights; organization of tape records and reels, tape label-
ing and tape library records; and use of equipment associated with
magnetic tapes.

2.3.2.4 IBM 1301 and 1302 Disk Storage: Sequential Data Organization
Form A22-6T784

This manual presents & different approach to the storing and the
retrieving of data on the IBM 1301 and 1302 Disk Storage. It explains
how all data files in disk storage can use a common set of progrems
and techniques. Even though data are loaded sequentially, retrieval
can be either in a random or sequential manner. An index, created as
the data file is loaded, associates data identifiers with actual track
addresses. Conversion is accomplished from date handling methods
presently in use.

T September 1965 2-61

2.3.2.5

IBM 1301 and 1302 Disk Storage, Models 1 and 2, with the 7090,
TO9%4, and TO94 Model II Data Processing Systems
Form A22-6T85

This manual contains a general description of the IBM Disk Storage
Units 1301 and 1302, Models 1 and 2, in their association with the
IBM 7090, TO94, and TO94 II Data Processing Systems. The reader
should be versed in these data processing systems.

7 September 1965 2-62

2.3.3 PROGRAMMING SYSTEMS

2.3.3.1 Catalog of Programs for IBM Data Processing Systems-- KWIC Index
Form C20-8090 ’

This catalog is divided into four main sections: 1) This section
tells how to order programs from the IBM Program Information Depart-
ment and from the Program Distribution Center. 2) This section has
an index in both Keyword-in-Content (KWIC) format and classification
code format. 3 & 4) These sections provide abstracts describing each
program available from the IBM Program Information Department and
from the Program Distribution Center, respectively.

2.3.3.2 IBM 7090[7094 Programming Systems: FORTRAN II Assembly Program (FAP)
Form C28-6235-3

This publication provides enough information to the programmer con-

cerning the 7090/709M FORTRAN II Assembly Program (FAP) so that it

enables him to code in the FAP language. FAP is a machine-oriented

symbolic language. The major part of the program can be written in

either FORTRAN or FAP., When programming in FORTRAN, FAP subroutines ‘
are used when FORTRAN is unsuitable. When programming in FAP, FORTRAN
subroutines are useful for certain computational and input/output
operations. FAP and FORTRAN can be used with the IBM FORTRAN Monitor

or the IBM 7090/709& IBSYS System Monitor.

2.3.3.3 IBM 7090/7094 Progremming Systems: Macro Assembly Program (MAP) Language
Form C28-6311-3

This publication has three main parts: 1) This part provides detailed
information on the T090/7094% Macro Assembly Progrem (MAP) language.
The MAP language provides the user with an extensive set of pseudo-
operations along with all of the 7090 and TO94 machine operations.

2) This part describes the functions of the pseudo-operations and
cites examples of their formats and uses. 3) This part describes
macro operations and macro-related pseudo-operations and expounds
upon their use in programs. Since the Macro Assembly Program (IBMAP)
is a component of the 7090/7094% IBJOB Processor, it operates under

the IBJOB Processor.

7 September 1965 2-63
2.3.4 COBOL
2.3.4.1 COBOL=- General Information Manual

2.3.k.2

Form F28-3053

This manual describes the COBOL language (Common Business Oriented
Language) as developed under the suspices of the Department of Defense
and other Federal Government agencies, the Conference of Data Systems
Languages (CODASYL) and computer manufacturers.

IBM TO9QZ709M Programming Systems: IBJOB Processor Part 5: COBOL
Compiler (IBCBC)
Form J28-6260

This bulletin describes in full those elements of the COBOL language
that appear in the initial version of the 7090/TO94 COBOL Compiler
(IBCBC), a component of the IBJOB Processor. This is the fifth of
several bulletins that comprise the IBJOB Processor manusal.

7 September 1965 2-6L

2.3.5 FORTRAN

2.3.5.1 IBM 7090/709h Programming Systems: FORTRAN IT Programming
Form C28-6054

This publication undertakes to tell users of what sources are avail-
able to translate FORTRAN II statements into machine language state-
ments. This is accomplished by using either the FORTRAN II Processor
operating under the System Monitor of the 7090/709& IBSYS Operating
System or the independent FORTRAN Monitor System. The IBM Formula
Translating System, T090/TO9k FORTRAN, is an automatic coding system
for the IBM T090/7094 Data Processing System.

2.3.5.2 IBM 7090/709h Programming Systems: FORTRAN II Operations
Form C28-6066-6

The purpose of this publication is to provide instructions for the
operation and use of the IBM 7090/709h FORTRAN II System. It also

tells how the FORTRAN II System tape is produced and maintained.

Included in the FORTRAN System are the FAP (FORTRAN Assembly Program)
Assembler, the FORTRAN II Monitor, and the FORTRAN II Compiler. The ‘
compilation, assembly, and execution of FORTRAN and FAP programs are
coordinated by the FORTRAN II Monitor.

2.3.5.3 IBM 7090/7094 FORTRAN IV Compiler (IBFTC) Replacement: Specifications
and Language Additions
Form C28-6376

This publication provides enough information for the programmer to
enable him to make the transition from the present FORTRAN IV Compiler
to the new T7090/7094 FORTRAN IV Compiler (IBFTC). The new compiler
will operate practically within the same manner in respect to the
present IBJOB Processor. Four new language features are provided for
the FORTRAN IV language. They include 1) up to seven dimensions for
arrays, 2) nonstandard returns from subroutines, 3) multiple entry
points to a subprogram, and 4) input/output without an explicit input/
output list and format statement.

2.3.5.4 FORTRAN
Form F28-80T7k4-3

This menual presents a description of FORTRAN. FORTRAN is a high-level
problem-oriented computer language that is available for most IBM Data
Processing Systems.

7 September 1965 2-65

2.3.5.5

2.3.5.6

2.3.5.7

2.3.5.8

2.3.5.9

IBM 7090/7094 Programming Systems: FORTRAN IV Language
Form C28-62T4-4

This publication undertakes to describe the FORTRAN IV language and
provides a description of the format and effect of arithmetic, control,
input/output, and specification statements. It also cites examples as
to how these statements can be used, as well as describing methods of
using available mathematical subroutines. The FORTRAN IV Compiler, a
component of the IBJOB Processor, processes the FORTRAN IV language.

IBM 7090/7094 IBSYS Operating System: IBJOB Processor
Form C28-6275-4

This two-part publication presents a comprehensive description of the
7090/7094 IBJOB Processor. It also discusses the various components
associated with the IBJOB Processor. Part one contains information
for the applications programmer. Part two is for the systems pro-
grammer. The IBJOB Processor, a group of programs used to translate
progremming languages, consists of: The FORTRAN IV (IBFTC) and the
COBOL (IBCBC) compilers; the Loader (IBLDR); the IBJOB Debugging Pro-
cessor (IBLIB); and if applicable, the Subroutine Library (IBLIB).
The latter is a library of preassembled subroutines that can be used
by the object program.

IBM 7090/709& IBSYS Operating System: Specifications for IBJOB
Processor Debugging Package
Form C28-6362-1

This publication describes the debugging packages available for COBOL
programs at compllation time and for FORTRAN IV and MAP programs at
load time. The IBJOB Processor Debugging Package is an aid to pro-
grammers in that it obtains dynamic dumps of specified areas during
program execution.

7090/199h PROGRAMMING SYSTEMS: IBJOB Processor, Cverlay Feature of IBLDR
Form (28-6331

This publication provides enough information to the experienced pro-
grammer to enable him to use the Overlay Feature of the Loader, IBLDR.
With the Overlay Feature, it is possible to exceed.the capacity of a
single core storage load. Since IBIDR is a component of the IBJOB
Processor, the reader should have prior knowledge of the IBJOB Processor.

IBM 7090/7094 IBSYS Operating System: Input/Output Control System
Form C28-6345-2

This publication undertakes to tell programmers of the TO90/709h

7 September 1965 2-66

Input/Output Control System. There is a discussion of basic concepts,
an explanation of the use of IOCS commands and routines, and infor-
mation on the techniques of sequential processing as well as a separate
section covering random processing. IOCS is responsible for meking
data readily available for processing by automatically controlling

the transmission of data to and from recording devices. This publi-
cation further expounds upon the three forms of IOCS. The programmer
has access to both the Library I0CS and the full IOCS (7090—10-919),
The former, as used with the Macro Assembly Program (MAP), is contained
in the IBJOB Subroutine Library. The latter, as used with the IBM
7090/T094% FORTRAN II Assembly Program (IBSFAP), is an independent sys-
tem. The differences in the two systems are noted. The third form,
FORTRAN IOCS, is used by FORTRAN IV object programs.

2.3.5.10 IBM 7090/709h IBSYS Operating System Utilities
Form C28-6364-3, with N28-0125-D

This publication undertakes to describe the following seven utility
routines: 1) Restore Disk/Drum, 2) Load Disk/Drum, 3) Tape Dump,

4) Format-Track Generation, 5) Home-Address and Record-Address

Generation, 6) Dump Disk/Drum, and 7) Clear Disk/Drum. These utility (@)
routines are available to users of the IBM 7090/709h IBSYS Operating

System equipped with IBM T29 Magnetic Tape, 1301 Disk Storage, 7320

Drum Storage, or the 7340 Hypertape Units. There is also a descrip-

tion of the Utility Monitor.

2.3.5.11 IBM 7090/709h Generalized Sorting System: TO90/709M Sort
Form C28-6307

This publication presents a description of the 7090/709h Generalized
Sorting System as it operates under the System Monitor. It explains
how the sort program sorts fixed-length or variable-length records by
using either the commercial or scientific collating sequences. These
records are written in either signed or unsigned binary or BCD mode.
Part one of this publication discusses the organization and structure
of the sort program. A description of the sorting and merging tech-
niques is provided. Part two describes in detail the program usage.

It covers such areas as tape record format and file structure, control
card formats, general specifications, and user modification procedures.

2.3.5.12 IBM 7090/7094 IBSYS Operating System: System Monitor (IBSYS)
Form C28-6248-2

This publication covers the role of the System Monitor in its overall
control and direction of advanced business and scientific programming
aids of the IBSYS Operating System. With practically no human inter-
vention, the System Monitor is able to process a variety of unrelated

7 September 1965 2-67

2.3.5.13

2.3.5.14

2.3.5.15

Jobs sequentially. Of particular interest to the applications pro-
grammer are the introduction and sections describing the System
Supervisor and the System Core-Storage Dump Program. The systems
programmer should direct his attention to sections dealing with the
System Nucleus, the System Editor, and the Input/Output Executor.

IBM T090/7094 IBSYS Operating System: Operator's Guide
Form C28-6355 :

This publication provides enough information to the operator and
machine room personnel to enable them to operate the 7090/709& IBSYS
Operating System. There are descriptions along with explanations of
System Monitor control cards, system halts, initial start procedures,
and the on-line messages.

IBM 7090/709h IBSYS Operating System: Symbolic Update Program--
Preliminary Specifications

Form C28-6386-3

This publication describes how the Symbolic Update Program provides
the IBSYS user with the means to modify serialized symbolic tapes, as
well as those tapes for the operating system itself. It defines the
requirements for the Program's implementation and pseudo-instructions.

IBM 7090/709% FORTRAN IV Language: Input/Output without Explicit
List and Format
Form C28-6377

This publication provides enough information to the programmer to make
him knowledgeable of the FORTRAN IV language addition scheduled for
implementation in a future version of the FORTRAN IV Compiler. Dis-
cussed is the input/output and conversion system without an explicit
input/output list and a FORMAT statement.

7 September 1965 2-68

2.3.6 INSTALLATION SUPPLIES

2.3.6.1 70904 Reference Card
Form X22-6691

All 7094 instructions in both alphabetic and numeric sequence are
listed in the TO94 Reference Card. The card also provides data channel
commends, and disk storage and Hypertape orders.

2.3.6.2 COBOL Program Sheet
Form X28-1L46L

This sheet has provisions for the four divisions of the COBOL program;
namely, Identification, Environment, Data and Procedure. See "COBOL
General Information Manual," Form F28-8053.

2.3.6.3 COBOL Reference Card
Form X28-1520

This card provides the COBOL programmer with material that he fre-
quently uses. It is a handy reference card showing a COBOL word list
and a basic COBOL format along with tables concerning special charac-
ters used in COBOL; arithmetic and conditional expressions (sequence
of symbols); arithmetic and relational operators; and data-items
pictorial characters.

2.3.6.4 IBM TO40/44-7090/94 Symbolic Langusge-Coding Sheet
Form X28-6333

This form is used for coding any of the symbolic languages accepted
by the assembly programs in the 7090/709h Programming Systems and the
TO4O/TOLL Programming Systems. For ease in both programming and card
punching, columns and lines are ruled and numbered.

2.3.6.5 FORTRAN Coding Form
Form X28-7327

When programming in the FORTRAN language, the FORTRAN Coding Form 1is
used. For ease of both programming and card punching, columns and
lines are ruled and numbered.

7 September 1965 2-69
Table 2-4. TO94 FORTRAN Documentation Form-Number Index

FORM NO. TITLE PARAGRAPH| PAGE NO.

N22-6589 IBM 729, 7330, and 72T Magnetic Tape Units-- 2.3.2.3 2-60
Principles of Operation

A22 -6689 TOS4 Data Processing System Configurator 2.3.1.1 2-59

A22-6T703 TO94 Data Processing System 2.3.2.1 2-60

N22 -6T60 TO94 Model II Data Processing System 2.3.2.2 2-60
(Bulletin)

A22 -6T6L IBM 7094 Model II Configurator 2.3.1.2 2-59

A22 -6T784 IBM 1301 and 1302 Disk Storage: 2.3.2.4 2-60
Sequential Data Orgenization

N22-6T785 IBM 1301 and 1302 Disk Storage, Models 2.3.2.5 2-61
1 and 2, with 7090, 7094, and TO9L
Model II Data Processing Systems

C20-8090 Catalog of Programs for IBM Data Processing 2.3.3.1 2-62
Systems~-KWIC Index

C28-6235-3| IBM 7090/T7094 Programming Systems: 2.3.3.2 2-62
FORTRAN II Assembly Program (FAP)

C28-6054 IBM 7090/7094 Programming Systems: 2.3.5.1 2-64
FORTRAN II Programming

C28-6066-6] IBM T090/7094 Programming Systems: 2.3.5.2 2-6L4
FORTRAN 1II Operations

C28-6248-21 IRM TO90/TO9h IBSYS Operating System: 2.3.5.12 2-66
System Monitor (IBSYS)

C28-62T7h-4} IBM T090/7094 Programming Systems: 2.3.5.5 2-65
FORTRAN IV Language

C28-6275-4| IBM T7090/7094% IBSYS Operating System: 2.3.5.6 2-65
IBJOB Processor

C28-6307 IBM T090/TO9%4 Generalized Sorting System: 2.3.5.11 | 2-66
T090/709% Sort

C28-6311-3] IBM T090/7094% Programming Systems: Macro 2.3.3.3 2-62
Assembly Program (MAP) Language

C28-6331 TO90/ 7094 Programming Systems: IBJOB 2.3.5.8 2-65
Processor, Overlay Feature of IBLDR

C28-6345-2] IBM 7090/7094 IBSYS Operating System: 2.3.5.9 2-65
Input/Output Control System

C28-6355 IBM T090/TO9%4 IBSYS Operating System: 2.3.5.13 | 2-67
Operator's Guide

C28-6362-1| IBM 7090/7094 IBSYS Operating System: 2.3.5.7 2-65
Specifications for IBJOB Processor
Debugging Package

C28-6364-3] IBM T7090/7094 IBSYS Operating System Utilities [2.3.5.10 | 2-66

7 September 1965 2-70

Table 2-4. TO94 FORTRAN Documentation Form-Number Index (Cont'd)

FORM NO. TITLE PARAGRAPH |[PAGE NO.
C28-6376 IBM TO90/TO94 FORTRAN IV Compiler (IBFTIC) 2.3.5.3 2-64
Replacement: Specifications and Language
Additions
C28-6377 IBM T7090/T7094 FORTRAN IV Language: Input/ 2.3.5.15 2-67

Output without Explicit List and Format

C28-6386-3 | IBM 7090/T7094 IBSYS Operating System: Symbolic | 2.3.5.1k 2-67
Update Program--Preliminary Specifications

F28-8053 COBOL~~Ceneral Information Manual 2.3.4 2-63

F28-80T4-3 | FORTRAN 2.3.5.4 2-6h4

J28-6260 IBM 7090/T7094 Programming Systems: IBJOB 2.3.4.2 2-63
Processor Part 5: COBOL Compiler (IBCBC)

X22-6691 7094 Reference Card 2.3.6.1 2-68

X28-1464 COBOL Program Sheet 2.3.6.2 2-68

X28-1520 COBOL Reference Card 2.3.6.3 2-68

X28-6333 IBM TOLO/LL4=TO90/94 Symbolic Language- 2.3.6.4 2-68
Coding Sheet

X28-T7327 FORTRAN Coding Form 2.3.6.5 2-68

7 September 1965 2

2.k

2.4.1

2.4.1.1

2.4.1.2

1

SYSTEM TAPE CONTENTS

This section describes in brief the characterization of the systems
contained on the combined IBSYS/FMS master tepe employed on the TOSL
A, B, C and E computers.

FORTRAN MONITOR SYSTEM (FMS)

The FORTRAN Monitor System is a collection of programs that enable

a programmer to compile a FORTRAN II source language program, assemble
a FAP language program, and execute an object program. 1In addition,
the FMS system contains a library of input/output and exponential
subroutines utilized by the FORTRAN compiler and a library of mathe~
matical subroutines. The processor provides the capability of com-
bining programs written in FORTRAN II and FAP languages with previously
assembled program segments to form a single executable object program.
Facilities are available for changing core storage loads so that exe~
cuted portions of a program can be overlaid with program portions yet
to be executed. Each of the subprograms of the system are briefly
described in 2.4.1.1, 2.4.1.2, and 2.4.1.3.

FORTRAN II Compiler

The FORTRAN II Compiler translates programs written in the FORTRAN II
language and produces input to the assembler. The assembler processes
the input, and the resulting binary object progrem may be loaded for
execution. The obJject program, which is a result of compiling, assem-
bling, and loading, consists of the generated instructions and the
subroutines from the subroutine library.

Additional information on the FORTRAN II language and operation is
contained in the following publications: IBM FORTRAN II General
Information Manual, Form C28-80T4 and IBM 7090/7094 Programming
Systems: FORTRAN II Operations, Form C28-6066.

FORTRAN II Assembly Program (FAP)

The FORTRAN Assembly Program processes FAP language programs and pro-
duces binary formalized object programs. The assembled object program
may then be loaded for execution. A detailed description of the
assembler is contained in the IBM 7090/709h Programming Systems:
FORTRAN II Operations, Form C28-6060; FORTRAN II Assembly Programs,
Form C28-6235; and in the 7094 Data Processing System-Principles of
Operation, Form A22-6703.

7 September 1965 2-72

2.4.1.3

2.4.1.4

Binary Symbolic Subroutine Loader (BSS)

The Binary Symbolic Subroutine Loader is punched out by FORTRAN as

the first nine cards of each main program. Additionally, a program
card is punched out for each main program deck and for each subpro-
gram deck. The program card specifies the number of locations to be
occupied by the routine; this number is used as an increment for
relocating an immediately subsequent routine. The loader uses the
information contained on the program cards to allocate core storage
for the main program routine and any associated subprogram routine.
Additional information on the BSS loader is contained in the IBM 7090/
TOOk Programming System: FORTRAN II Operations, Form C28-6060.

FORTRAN II Library

The FORTRAN II library is a collection of subroutines in relocatable
binary form. It consists of the input/output and exponential sub-
routines utilized by the FORTRAN compiler and the FORTRAN library
mathematical subroutines. The entry point names, card labels, and
descriptions of the subroutines contained in the library follows.

(1) special DSD Library Subroutines: A brief description of addi-
tional routines which are unique to the DSD system library is as
follows:

a. Mathematical

Name Source Description

ASIND Y

ASIN{A) Computes the principal value of the
arc sine in degrees. Output is a
normalized floating-point number in

the AC.

ACOSD Y = ACOS(A) Computes the principal value of the
arc cosine in degrees. Output is
a normalized floating~point number
in the AC.

ATANGD Y = ATANGD(A,B)|Computes the properly quadranted arc

tangent in degrees of the quotient of
the two signal inputs. Output is a
normalized floating-point number in
the AC.

‘ T September

1965 2-73

(1) Special DSD Library Subroutines (Cont'd)

B..

Mathematical (Cont'd)

Name Source Description

ACOSR Y

]

ACOSR(A) Computes the arc cosine in radians.
Output is a normalized floating-
point number in the AC.

ASINR Y = ASINR(A) Computes the arc sine in radians.
Output is a normalized floating-
point number in the AC.

ATANGR | Y

AT%NGR(A,B) Computes the arc tangent in radians.
Qutput is a normalized floating-
point number in the AC.

SIND Y = SIND(A) Computes the sine of an angle A ex-
pressed in degrees. Output is a
normalized floating-point number in
the AC.

COSD Y

i

CcosD(A) Computes the cosine of an angle A
expressed in degrees. Output is a
normalized floating-point number
in the AC.

b.

UMPLOT

Name Source Description

UMPIOT | See Paragraph Rapid plotting of numerical infor-
2.5.1.1 mation for use with FORTRAN calling
programs. The resulting graph is
copied onto any decimal output tape
for off-line printing. (See Paragraph
2.5.1.1 for complete description.)

7 September 1965

2-Th

(1) special DSD Library Subroutines (Cont'd)

c. CalComp 570 Plotter Routines
Name Source Description
CCPIOT | CALL CCPLOT CCPIOT is analogous to the current
(x, ¥, IC) PIOT routine. It is used to perform
pen movements on the CalComp 570
Plotter. (See Paragraph 2.5.1.4 for
detailed instructions in its use.)
CPIOTS | CALL CPLOTS CPIOTS is analogous to the current
(BUFFER, IDT, PIOTS routine. It is used to set up
INDIC8) a tape buffering area. (See Paragraph
2.5.1.5 for detailed instructions in
its use.)
SYMBOL | CALL SYMBOL SYMBOL is analogous to the current
(X, Y, HEIGHT, SYMBL4 routine. It is used to gen-
BCD, THETA, N) erate symbols and alphameric char-
acters for the Cal Comp 570 plotter.
(See Paragraph 2.5.1.6 for detailed
instruction in its use.)

d. Utility Routines

Name

Source

Description

CLOCKS

CALL MIN ON(I)
CALL OFF MIN
CALL MINITS(M)
CALL MSEC ON(X)
CALL OFF MS
CALL MSECS(X)

This is a subroutine to operate the
millisecond and/or minute trap sub-
channels on the DCC on channel F.
For each clock, there are entry points
to turn the clock on, turn it off, and
to read out the current value of
elapsed time. (See DSD Memorandum
dated 11/14/63 by R. Danek for addi-
tional information.)

. 7 September 1965

2=T5

(1) special DSD Library Subroutines (Cont'd)

d. Utility Routines (Cont'd)

Name Source Description

DUMP CALL DUMP Dumps core according to the specifi-
(a,B,C) cation in the arguments A, B and C.
CALL PDUMP DUMP initiates next job while PDUMP
(a,B,C) returns control to calling program.

(See Parasgraph 2.5.1.2 for description
of modified 65K dump routine.)

(2) Mathematical Library Subroutines:

. L Single-Precision Subroutines
Name Source Description
EXP(1 I*%J Exponential expression--given a fixed-

EXP(2

EXP(3

EXP

A¥*J

A%¥*B

Y = EXPF(A)

point base and a fixed-point expo-
nent. Output is a fixed-point number
in the AC.

Exponential expression--given a
floating~point base and a fixed-point
exponent. Output is a normalized
floating-point number in the AC.

Exponential expression--given a
floating-point base and a floating-
point exponent. Output is a normal-
ized floating-point number in the AC.

Computes eA, the natural antiloga-
rithm of the number A. Output is a
normalized floating-point number

in the AC,

7 September 1965 2-76

(2) Mathematical Library Subroutines (Cont'd)

h. Single-Precision Subroutines (Cont'd)

Name Source Description

1t

SQRT Y = SQRTF(A) Computes the positive square root for
a single-precision, real number A.
Output is a normalized floating-point

number in the A.C.

SIN,COS | Y = SINF(A) Computes the sine or cosine of an
Y = COSF(A) angle A expressed in radians. Output
is a normalized floating-point number
in the AC.

ATAN Y = ATANF(A) Computes the arctangent in radians of
the argument A. Output is a normal-
ized floating-point number in the AC.

LOG, Y = LOGF(A) Computes the natural logarithm or

LOGLO Y = LOGLOF(A) the common logarithm of the number
A. Output is a normalized floating-
point number in the AC.

TANH Y = TANHF(A) Computes the hyperbolic tangent of

the argument A. Output is a normal-
ized floating-point number in the AC.

b. Double-Precision Subroutine

Double-Precision arithmetic is a technique for carrying out
floating-point calculations with twice the normal number of
significant decimal places. Only single-precision floating-
point numbers may be input/output; output data may be more
accurate as a result of using double-precision operations
internally. The standard FORTRAN II library has been modi-
fied by the addition of double-precision subroutines that
utilize the TO94 double-precision hardware. These routines
may be employed by placing an E in column 1 as described
herein. When the E double-precision routines are specified,
the I/O subroutines (ESLl) and (ESLO) provide control for

‘ T September 1965 2-T7

(2) Mathematical Library Subroutines (Cont'd)

b. Double-Precision Subroutine (Cont'd)
the input and output of lists containing nonsubscripted array
names. For additional information, see the Programming Methods
Section Memorandum dated 5/18/65.
Name Source Description
DMOD D Y = MODF(D,E) |Computes D modulo E (defined as D
EMOD E Y = MODF(D,F) |(D/E) * E) where only the integer
portion of (D/E) is used in evolving
the equation.
DINT D Y = INTF(D) Obtains the integer part of a double-
precision number.
DEXP(2 | D Y = D**E Exponential expression for double-
‘ EEXP(2 | E Y = D¥*E precision.
DILOG D Y = LoGF(D) Computes the natural logerithm or the
DIOG1O | D Y = LOGlOF(D) |common logarithm of the argument D.
ELIOG E Y = LoGF(D)
EIOG1O | E Y = LOG1OF(D)
DSIN D Y = SINF(D) Computes the sine or cosine of an
DCOS D Y = COSF(D) angle expressed in radians.
ESIN E Y = SINF(D)
ECOS E Y = COSF(D)
DATAN D Y = ATANF(D) Computes the arctangent, in radians
DATAN2 | D Y = ATAN2F(D,E) j[of one or two arguments.
EATAN E Y = ATANF(D)
EATAN2 | E Y = ATAN2F(D,E)
DFAD DA=B+C Performs the basic double-precision
DFSB DA=B-C arithmetic operations (addition,
DFMP DA=3B*C(C subtraction, multiplication, and
DFDP DA=B/C division).
DEXP(3 | D Y = D**E One of two routines is compiled depend-
EEXP(3 | E Y = D¥*E ing on whether a floating-point base,
fixed-point exponent, or a floating-
' point exponent is specified.

7 September 1965

2-78

(2) Mathematical Library Subroutines (Cont'd)

b. Double-Precision Subroutine (Cont'd)

Name Source Description
ETANH E Y = TANHF(D) Computes in double-precision floating-
point the hyperbolic arctangent of
the argument D.
DSQRT D Y = SQRTF(D) Computes in double-precision floating-
ESQRT E Y = SQRTF(D) point the positive square root of the
value D.
DEXP DY = D¥*E Exponential subroutine for double-
EEXP E Y = D¥¥E precision numbers.
EMAXT E Y = MAXTF Selectsthe largest of the specified
(a,B,C...) arguments.
EMINT E Y = MINIF Selects the amallest of the specified
(A,B,C...) arguments.
ESIGN E Y = SIGNF(A,B) | Changes the sign of the second argu-

ment B to the sign of the first
argument A,

7

numbers.

Complex Arithmetic

Complex Arithmetic is a technique for carrying out floating-
point calculations with the real and imaginary parts of complex
No provision is mede for the input/output of complex
numbers; however, since each part is requested internally as a
separate single-precision floating-point number, each part may
be input/output separately.

Name

Source

Description

TABS

I A = ABSF(C)

Computes the absolute value of the
argument C, where C2 = X2 + Y for
the complex number X + iY.

‘ 7 September 1965

2-T9

(2) Mathematical Library Subroutines (Cont'd)

c. Complex Arithmetic (Cont'd)

Name Source Description

IEXP I A = EXPF(C) Computes the natural antilogarithm of
the argument C; if C = X + 1Y then
IEXP computes e®

ILOG I A = I0GF(C) Computes the natural logarithm of the
argument C; if C = X + iY then ILOG
computes logeC.

ISQRT I A = SQRTF(C) Computes the principal square root
of the argument C; if C = X + iY then
ISQRT computes 0172.

ISIN I A = SINF(C) Computes the sine or cosine of the

. ICOS I A = COSF(C) argument C.

IFMP IC = A¥B Performs complex multiplication and

IFDP IC-= A/B complex division, respectively.

IEXP(2 I Y = D¥*E Exponential expression for complex

numbers.

(3) FORTRAN II I/0:

The FORTRAN input/output library contains the

necessary routines to insure the correct operation of source lan-

guage I/0 statements.

A brief characterization of each routine on

the DSD library is given below.

‘ (spH)

Card
Name Label | Description
(sTH), (STEHM), (STHD) |9STH Writes BCD tape record(s) from
storage.
(SCH) 9SCH Punches alphameric card(s) from
storage.
9SPH Prints information from storage
on the on-line printer.

7 September 1965 2-80

(3) FORTRAN II I/0 (Cont'd)

Card

Name Label | Description

(BST) 9BST | Backspaces the designated tape
one record.

(EFT) 9EFT Writes an EOF mark on the desig-
nated tape.

(RwT) ORWT Rewinds the designated tape.

(SLI) 9SLI Controls input of lists contain-
ing nonsubscripted array names.

(s10) 9SLO Controls output of lists contain-
ing nonsubscripted array names.

(RER), (RDC) 9RER Error routines for tape reading.

(WER), (WTC) OWER Error routines for tape writing.

(roB), (EXB), 9I0B Controls I/0 of binary data.

(BUF), (SET)

(srD), (DRS) 9DRM Writes or reads dates on the
designated drum. (SRD) is for
writing and (DRS) is for reading.

(I0U) 910U DSU channel-unit table. Local
modifications have been made to
rearrange logical unit definitions.

(10H), (FIL), (RTN) 9I0H Controls input/output and con-
version of alphameric data.

(10s), (mpS), (WRS), | 910s Supervisory control of channel-

(BSR), (WEF), (REW), unit designation during input/

(ETT), (RCH), (TEF), output.

(7c0), (TRC)

(TsB), (RIR) 9TSB Reads binary tape record(s) into
storage.

.‘ 7 September 1965

2-81

(3) FORTRAN II I/0 (Cont'd)

Name

Card
Label | Description

(CSH)

(sTB), (WLR)

(TsH), (TSHM)

9STB Writes binary tape record(s) from
storage.

9CSH Reads alphameric card(s) into
storage and converts their con-
tents to BCD,

9TSH Reads BCD tape record(s) into
storage.

(L) FORTRAN IT Utility Subroutines:

‘I’ Name

Card
Label

Description

X10C

EXIT

(TES)

CHAIN

9X10

OEXE

9XIT

OEXEM

OTES

SCHN

The source statement, L = XLOCF(N), returns
the relocated location of its argument
(variable N) to the accumulator as a FORTRAN
fixed-point constant.

Caontrols the object program error procedure
when execution is not under Monitor control.
Modified so traps are disabled.

Positions the system tape at the sign-out
record and restores 1-CS to begin the next
job. Routine is modified to permit call-out
of multiple tag mode and traps disabled.

Controls the obJject program error procedure
when execution is under Monitor control.
Routine is modified to permit call-out of
multiple tag mode and traps disabled.

The instruction XEC * $ (TES) may be used in
a FAP-coded subroutine to make sure that the
execution of any previous FORTRAN WRITE
statement is complete and checked.

Iocates chain links, loads the chain executive
loader into lower storage, and transfers con-
trol to it.

7 September 1965 2.82

2.4.2

2.4.2.1

SYSTEM MONITOR (IBSYS)

The System Monitor provides the execution, control, and coordination
that enables a series of unrelated jobs to be processed with little
or no operator intervention. Operating under the control of the Sys-
tem Monitor are several subsystems that provide the progremmer with
a variety of programming tools. The capabilities of these subsystems
may be used singly or in combination to process a particular job.

The System Monitor consists of the:

System Supervisor--This controls and coordinates the
processing of Jjobs.

System Nucleus--This provides facilities for inter-
communications among the subsystems.

Input/Output Executor--This coordinates and controls
input/output.

Core-Storage Dump Program--This facilitates testing
and analysis of programs.

System Editor--This 1s used in modifying and main-
taining the System Monitor and subsystems.

IBJOB Processor

The IBJOB Processor consists of a group of programs used to translate
programming languasges snd to permit the loading and execution of the
compiled and assembled programs. Contained within the IBJOB Processor
are the following programs:

Processor Monitor (IBJOB)

FORTRAN IV Compiler (IBFIC)

COBOL Compiler (IBCBC)

Macro Assembly Program (IBMAP)

Relocating Loader (IBLDR)

Subroutine Library (IBLIB)

Dubugging Package (IBDBL & IBDBC)

7 September 1965 283

The Processor Monitor reads control cards that specify the action

to be performed. The action can consist of one or more compilations,
assemblies, or the loading of relocatable programs that were assem-
bled previously. 1In this way, the monitor controls the interaction
among the several IBJOB Processor components. These include:

(1) The FORTRAN IV Compiler (IBFTC): The IBFTC compiler translates
programs written in the FORTRAN IV source language and produces in-
put to the assembler. The assembler and, if required, the Loader
process the input. The processing and loading to be performed by the
Loader is specified on the $IBJOB control card via the functions
called GO, LOGIC, DIOGIC, or MAP (see Section 2.2). The object pro-
gram is composed of generated instructions and subroutines from the
subroutine Library as a result of compiling, assembling, and loading.
The Processor Monitor calls the FORTRAN IV compiler into core storage
when it reads an $IBFTC control card (see Section 2.2).

(2) The Macro Assembly Program (IEMAP): The Macro Assembly Program
processes two types of programs: Those written in the MAP language
and those generated MAP programs that are output from FORTRAN IV and
COBOL compiler. There may be two types of outputs from the assembler:
relocatable or absolute binary. The output from the assembling and
loading functions is an object program composed of machine instruc-
tions generated by the assembler and coinciding with the MAP mne-
monics. In addition the object program may contain input/output
routines that are part of the subroutine Library and possibly FORTRAN
IV mathematical subroutines from the subroutine Library. The assem-
bler is called into operation when the Processor Monitor reads an
$IBMAP control card (see Section 2.2).

(3) The Subroutine Library (IBLIB): The subroutine Library consists
of a number of relocatable subroutines for system and programmer use.
It is composed of system subroutines and FORTRAN IV subroutines.
(COBOL subroutines have been removed from Date Systems Division
systems.) The FORTRAN section is divided into three groups: mathe-
matics, input/output, and utility. These subroutines are made s&vail-
able to the programmer via the Loader, which incorporates them, as
required, into the object program at load time.

7 September 1965 2-8L

1. Special Library Subroutines

A brief description of additional Library subroutines which are
unique to the Data Systems Division system Library is as follows:

a. Mathematical

Name Source Description

ASIND Y = ASIN(A) Computes the principal value of the
arc sine in degrees. Output is a
normalized floating-point number

in the AC.

ACOSD Y

1]

ACOS(A) Computes the principal value of the
arc cosine in degrees. Output is

a normalized floating-point number
in the AC.

ATANGD | ¥

ATANGD(A,B) | Computes the properly quandranted
arctangent in degrees of the quo-
tient of the two signal inputs.
Output is a normalized floating-
point number in the AC.

ACOSR Y

ACOSR(A) Computes the arc cosine in radians.
Output is & normalized floating-
point number in the AC.

ASINR(A) Computes the arc sine in radians.
Output is a normalized floating-
point number in the AC.

ASINR Y

ATANGR | Y

ATANGR(A,B) Computes the arctangent in radians.
Output is a normalized floating-
point number in the AC.

SIND Y SIND(A) Computes the sine of an angle A
expressed in degrees. Output is a
normalized floating-point number

in the AC.

COSD

<
H

cosD(A) Computes the cosine of an angle A

expressed in degrees. Output is a
normalized floating-point number in
the AC.

. 7 September 1965

2-85

1. Special Library Subroutines (Cont'd)

Description

b. UMPLOT
Name Source
UMPIOT

See Section 2.5

Rapid plotting of numerical infor-
mation for use with FORTRAN calling
programs. The resulting graph is
copied onto any decimal output tape
for off-line printing. (See Section
2.5 for complete description.)

L. Utility Routines

‘l' Name

Map Call

Description

FDMP

CALL DUMP(A,B,I)
CALL PDUMP(A,B,I)

CALL FPDUMP(A,B,I)

Modified 65K Core Dump Routine.
(see Section 2.2 for additional
information.)

2. Mathematical Library Subroutines

B, Single~Precision Subroutines

Name

Source

Map Call

Description

FXP1

FXp2

I**J

A¥*J

CALL .XPl.(I,J) | Exponential expression--given|

CALL .XP2.{A,J) Exponential expression--given

a fixed-point base and a
fixed-point exponent. Out-
put is a fixed-point number
in AC.

a floating-point base and a
fixed-point exponent. Out-
put 1s a normelized floating-
point number in AC.

—————

7 September 1965

no
]

[0 0]

o)

2. Mathematical Library Subroutines (Cont'd)

b, Single-Precision Subroutines (Cont'd)

Name |} Source Msp Call Description

FXPF |Y = EXP(A) CALL EXP(A) Computes e®, the natural
antilogerithm of the
number A. Output is a
normalized floating-
point number in AC.

FIOG |Y = ALOG(A) CALL ALOG(A) Computes the natural
AI0G10(A) | CALL ALOG1O(A) | logarithm or the common
logarithm of the number
A. Output is & normal-
ized floating-point
number in AC.

nn

FATN |Y = ATAN(A) CALL ATAN(A) Computes the arctangent,
ATAN2(A) CALL ATAN2(A) | in radiens, of the argu-
ments A or A/B, respec-
tively. Output is a
normalized floating-

point number in AC.

FSCN |Y = SIN(A) CALL SIN(A) Computes the sine or
Y = Cos(A) CALL Ccos(A) cosine of an angle A
expressed in radians.
Output is a normalized
floating-point number
in AC.

FTNH |Y = TANH(A) CALL TANH(A) Computes the hyperbolic
tangent of the argument
A. Output is a normal-
ized floating-point
number in AC.

FSQR | Y = SQRT(A) CALL SQRT(A) Computes the positive
square root of the num-
ber A. Output is a
normalized floating-
point number in AC.

7 September 1965

2-87

2. Mathematical Library Subroutines (Cont'd)

b. Double-Precision Subroutines

Name

Source

Mep Call

Description

FDMD

FDX1

FDX2

Y = DMOD(D,E)

1) D**I
2) C**I

1) D**A
2) D**E

CALL DMOD(D,E)

CALL .DXP1.(D,
CALL .CXPl.(C,

CALL .DXP2.(D,
CALL .DXP2.(D,

I)
I)

A)
E)

Computes D modulo E
(defined as D-(D/E)*E,
where only the interger
portion of (D/E)is used
in evaluating the
equation). Output is a
normalized double-
precision floating-
point number in the

AC and MQ.

1) Exponential expres-

sion~~given a double-
precision floating-
point base and a fixed-
point exponent. Out-
put is a normalized
double~-precision
floating-point number
in the AC and MQ.

2) Exponential expres-
sion--given a complex
base and a fixed-point
exponent. Output is a
complex number with the
real portion in the AC
and the imaginary
portion in the MQ.

1) Exponential expres-
sion~-~given a double-
precision floating-
point base and a
single-precision
floating-point expo-
nent. Output is a
double-precision nor-
malized floating-point
number in the AC and
MQ.

7 September 1965

2.

Mathematical Library Subroutines (Cont'd)

b.

Double-Precision Subroutines (Cont'd)

Name

Source

Map Call

Description

FDXP

FDIG

FDSQ

FDSC

<
"

DEXP(D)

DLOG(D)
DIOGLO(D)

9
nou

S
[

DSRQT(D)

<
1t

DSIN(D)

CALL DEXP(D)

CALL DLoG(D)
CALL DLOG10(D)

CALL DSRQT(D)

CALL DSIN(D)

2) Exponential expression--
given a double-precision
floating-point base and a
double-precision floating-
point exponent. Cutput is

a normalized double-precision
floating-point number in the
AC and MQ.

Computes the natural anti-
logarithm of the double-
precision number D. Output
is a normaslized double-
precision floating-point
number in the AC and MQ.

Computes the natural loga-
rithm or common logarithm of
the double-precision argument
D. Output is a normalized
double~-precision floating-
point number in the AC and

MQ.

Computes the positive square
root of the double-precision
argument D. Output is a
normalized double-precision
floating-point number in

the AC and MQ.

Computes the sine or cosine
of an angle expressed in
radians. Output is & nor-
malized double-precision
floating-voint number in
the AC and MQ.

7 September 1965

2-89

2. Mathematical Library Subroutines (Cont'd)

b. Double-Precision Subroutines (Cont'd)

Name} Source Map Call Description
FDAT| Y = DATAN(D) CALL DATAN(D) Computes the arctangent in
Y = DATAN2(D,E)| CALL DATAN2(D,E) | radians, of one or two

double-precision argu-
ments. Output is a nor-
malized double-precision
floating-point number in
the AC and MQ.

c. Complex Subroutines

Name

Source

Map Call

Description

FCAS

FCAB

FCXP

FCIG

C*F
c/F

a9
"

[
it

CABS(C)

CEXP(C)

CLOG(C)

CALL .CFMP. (C,
CALL .CFDP, (C,

CALL CABs(C)

CALL CEXP(C)

CALL CLoG(C)

F)
F)

Performs complex multiplica-
tion and complex division,
respectively. Output is a
complex number in the AC and
MQ. :

Computes the absolute value of
the argument C. Output is a
complex number in the AC and

MQ.

Computes the natural anti-
logarithm of the argument C.
Output is a complex number in
the AC and MQ.

Computes the natural loga-
rithm of the argument C.
Output is a complex number in
the AC and MQ.

7 September 1965 2-90

2. Mathematical Library Subroutines (Cont'd)

c. Complex Subroutines (Cont'd)

Name | Source Map Call Description

FCSQ| Y = FCSQ(C) | CALL CSQRT(C) Computes the principal square
root of the argument C. Out-
put is a complex number in
the AC and MQ.

FCSC| Y = CSIN(C) | CALL CSIN(C) Computes the sine or cosine
Y = ccos(c) | CALL ccos(c) of the argument C. Output is
a complex number in the AC
and MQ.

i. Machine Test Indicator Subroutines

These routines are used to test indicators by CALL statements in the .
FORTRAN language.

Name Map Call Description

FSLITE | 1) CALL SLITE(I) 1) For I = O all sense lites are set
2) CALL SLITE(I,J) | off. If I =1, 2, 3, 4 the correspond-
ing sense lite 1s set on.

2) The sense lite T =1, 2, 3, 4 is
tested and set OFF. For sense lite

ON the variable J is set to 1, for OFF
conditions J is set to 2.

FSSWTH | CALL SSWTCH(I,J) The sense switch I =1, 2, 3, 4, 5, 6
is tested and if switch is DOWN the
variable J is set to 1. For switch UE
J is set to 2.

FOVERF | CALL OVERFL(J) A test is performed on overflow con-
dition. When overflow exists the
varieble J is set to 1; no overflow
results in J set to 2. Machine is
left in non-overflow condition after
execution.

‘ 7 September 1965

2-91

3. Machine Test Indicator Subroutines (Cont'd)

Name

Map Call Description

FDVCHK

CALL DVCHK(J) The variable J is set to 1 when Divide

Check Indicator is ON and J is set to

after test,

2 when DCI is OFF. The DCI is set OFF

4. FORTRAN IV I/0

The FORTRAN input/output library contains the necessary routines to

insure the correct operation of source language I/O Statements.

brief characterization of each routine on the DSD Library is given

below.

‘..’ Name

Description

FOUT
FRWT

FSLDI

FSLBI

FSLI

FSLDO

FSLBO

FSIO

FVIO

FRCD

Writes blocked records on the system output unit.
Rewinds designated unit.

Controls processing of lists conteining nonsubscripted
BCD arraey names for input.

Controls processing of lists containing nonsubscripted
binary array names for input.

Sets up indexing for input of nonsubscripted arrays.

Controls processing of lists containing nonsubscripted
BCD array names for input.

Controls processing of lists containing nonsubscripted
array names for output.

Sets up indexing for output of nonsubscripted arrays.

Establishes identification between a variable logical
unit and the corresponding FORTRAN file.

Controls reading of cards on-line and conversion of
alphameric card code to BCD.

7 September 1965

4, FORTRAN IV I/O (Cont'd)

Name

Description

FEFT

FBST

UNITXX

FWRD

FWRB

FRDD

FRDB

FPRN

FPUN

FCNV

FIOB

FIOS

FIOH

FSEL

FWRO

FWRU

FRDU

FIOU

Writes a file mark on the designated unit.
Backspaces the designated unit one record.

I/O routines used by loader for the initialization of
IOCS files used by the object program.

Controls BCD write operation.
Controls binary write operation.
Controls BCD read operation.
Controls binary read operation.
Controls print operation (on-line).
Controls punch operation (off-line).

Effects the necessary conversion for input or output
list items.

Processes list items for binary transmission.

Initializes all I/O library IOCS calling sequences for
binary and BCD transmission.

Scans FORMAT Statements and links to the object program
to begin conversion of data.

Performs all IOCS selects.

Controls processing of list of variables and arrays
associated with BCD output.

Controls writing of BCD records.
Controls reading of BCD records.

Controls processing of lists of variasbles and arrays
associated with & NAMELIST name for BCD input.

7 September 1965

2-93

2. System Subroutines

Given below is a brief characterization of the system subroutines
contained on the DSD Library. The marked routines (*) are called
automatically for eadh. object program

Name

Description

. IBSYS

«JOEX

-JBCON

. LXCON

.FPIRP

. IODEF

. IOCSF

. JOCS

. IOCSM

.I0CSB

. JOCSL

Defines the indexes of the system units.¥
Defines the location of the I/O Executor entry points.*

Relocates Processor Monitor communication words to an
area immediately above IQOEX during object program
execution.¥*

Normally entered at termination of object program
execution; however, it is also entered at a system
stop or on a STR instruction. Object program files
are closed and all I/O activity is stopped.¥

Provides for processing of random records on 1301
disk storage.

Floating-point trap subroutine; determines the cause
of trap and write message on system output unit indi-
cating cause of trap and the octal location at which
it occurred.

Conteains primary I/O system communication region.
General entry and exit routines used by IOCS are
contained in this subroutine.

Initializes the communication region required by FORTRAN
I0CS and contains text for the special IOCS.

Contains the text for all levels of relocatable IOCS.

Initializes the communication region required by
MINIMUM IOCS.

Initializes the communication region required by
BASIC IOCS.

Initializes the communication region required by LABEL
I0CS=--modified to delete switch tests.

7 September 1965 2-g4

5. System Subroutines (Cont'd)

Name Description

.IOVRY | Loads overlay links--required for all object programs
using overley feature.

.LXSL | Read/write select routine.

.IBDBI Required for DEBUG requests. Interprets the request
and executes the operation.

.DSTRN | Required for all nonoverlay DEBUG requests--searches
a table for DEBUG request points.

.DSTRO | Used for overlay DEBUG requests--searches table for
request points.

6. FORTRAN Utility Subroutines

Neme Description

.ERAS Erasable words used by object program.

FPARST | Used by program SIFT to determine, for FORTRAN IV pro-
grams, address of desired part of double-precision or
complex pair, as specified in FORTRAN II program.

FXEM Controls object program error procedure--modified for
diagnostics to logical 3 and to delete messages.

XIT Returns control to subroutine .LXCON.

(4) The Loader (IBLDR): The Loader processes relocatable binary
program decks generated by the assembler and combines any re-
quired subroutines from the subroutine Library to form one
executable object program. It assigns absolute core storage
locations to the relocatable binary text of the program and
resolves cross-references. Additionally, it allocates core
storage for pools of input/output buffers and attaches files
to the buffer pools. The Loasder performs these functions
automatically; however, a programmer can modify the procedure .

by using control cards.

"-

7 September 1965 2-95

2.4,2.2

2.4.2.3

2.4.2.4

2.4.2.5

(5) The COBOL Compiler (IBCBC): THE IBCEC compiler translates
programs written in COBOL language and produces input to the
assembler. The assembler and, if required, the Loader process
the input. The processing and loading to be performed by the
Loader is specified on the $IBJOB control card via the function
calls GO, LOGIC, DLOGIC, or MAP (see Paragraph 2.2.1.2(L4)).
The object program is composed of generated instructions and
subroutines from the subroutine Library as a result of com-
piling, assembling, and loading. The Processor Monitor calls
the COBOL compiler into core storage when it reads an $IBFTC
control card (see Paragraph 2.2.1.2(5)).

The Commercial Translator Processor (CT)

This is available for compiling, assembling, loading, and executing
programs written in the IBM Commercial Translator Language. A com-
plete description of the CT is contained in the publication, IBM
709/7090 Commercial Translator Processor, Form J28-6169.

The 9OPAC Processor {QOPAC)

This is used to establish and maintain data files and to generate
reports on the data in the files. Additional information on the
90PAC Processor is available in the following IBM publications:

7090 Programming System, Share 7090 90 PAC

Part 1 of Introduction and General Principles, Form J28-6166
Part 2 of The File Processor, Form j28-6167

Part 3 of The Report Generator, Form J28-6168

The Input/Output Control System{IOSS)

This is used by programs assembled by the FORTRAN II Processor.

IOCS automatically controls the blocking and unblocking of data
records; the overlapping of processing with input and output; and
the preparation and checking of labels. The required portions of
IOCS are loaded with the assembled object program, and this relieves
the programmer of the task of writing complex I/0 routines. The
publication, IBM 7090/7094 IBSYS Operating System: Input/Output
Control System, Form C28-6345, provides a detailed description of
I0Cs,

The IBSFAP

This mode of the FORTRAN processor can be used to assemble programs
written in the FAP language. However, it may not be used to load
and execute the assembled program. The system programmer has used

7 September 1965 2-96 o ‘

2.4.2.6

2.h.2.7

2.4.2.8

IBSFAP primarily for updating symbolic tapes by changing, deleting,
or adding instructions. An IBSFAP assembled program can be loaded
and executed under control of the IOCS system or the FORTRAN mode of
the FORTRAN II Processor. Additional information on IBSFAP is avail-
able in the publication, IBM 7090/7094 Programming Systems: FORTRAN
IT Assembly Program (FAP), Form C28-6235.

The FORTRAN II Processor (Version III)

This operates under control of IBSYS and can be used to compile, assem-
ble, load, and execute programs written in FORTRAN II language. This
version of FORTRAN is available on the system tape; however, it is not
currently maintained. Those programmers requiring the use of this
version of FORTRAN II should contact the Programming Methods Section
for additional information.

The Utilities (DK9QOUT)

These utilities, available under the control of IBSYS monitor, consist
of 1) a tape dump routine for 729 Magnetic Tape Units and 7340 Hyper-
tape Drives and 2) several 1301 Disk Storage and 7320 Drum Storage
routines. These routines consist of format track generation, home
address and record address identification, load disk/drum, dump disk/
drum, restore disk/drum, and clear disk/drum. A complete description
of these routines and their use is contained in the publication, IBM
7090/ 7094 IBSYS Operating System Utilities, Form C28-636k.

The RESTART Program

This is used exclusively by the operator of the system. It is designed
to enable the operator to restart an interrupted progrem using & check-
point record recorded by IOCS before the interruption occured. A de-~
scription of RESTART is contained in the publication, IBM 7090/ TO9L
IBSYS Operating System: Operator's Guide, Form C28-6355.

7 September 1965

2.5

2.5.1

2.5.1.1

NS
k

\C

=

UTILITY ROUTINES

This section describes those utility routines that have been prepared
for use by Goddard Space Flight Center programmers. These routines
are contained on Cl utility tepe, in binary decks, and on system
library.

FORTRAN IIT

UMPIOT Plotting Subroutine

(1) Purpose: The purpose of this subroutine is for rapid plotting
of numeric information for use with FORTRAN Calling programs. The
resulting graph is copied onto any decimal output tape for off-line
printing.

(2) Method: The philosophy used in writing this subroutine was to
treat a region of core storage (called the image) much as a piece of
graph paper when plotting data manually.

First the image region is blanked out and & grid formed of I's and
-'s (with + at the intersections) is placed in the image. Given the
maximum and minimum values of the two variables, say X and Y, the
routine can place any specified BCD character at the appropriate
position in the image for a given pair of velues (X;, Y;).

Each point (Xj, Yi) is plotted individually and independently. A
character falling on a grid line replaces the grid character in that
position. A character falling on a previously plotted character will
replace that character. Points falling ocutside the grid limits will
be ignored. When all desired points have been plotted, the image is
copied onto the specified decimal output tepe for off-line printing.

(3) Use: The subroutine has four main entries which perform the
following functions:

PIOT 1 sets up the grid spacing and the total width and
length of the graph lmage. It determines the location
of the decimal points and the multiplying factors (powers
of 10) for values of the ordinate and the abscissa to be
printed at the grid lines.

PIOT 2 prepares the grid, examines the meximum and mini-
mum values of the coordinates, and establishes internally
a formula for computing the location in the imasge corre-
sponding to the point (X;, Yi).

7 September 1965 2-98

()

PIOT 3 places a specified BCD character in the

appropriate position(s) corresponding to the
given (Xi, Yj).

FPIOT 4 writes the image of the completed graph

on the output tape for off-line printing. A

label for the ordinate 1is printed vertically at
the left edge of the page. Values of the abscissa
and ordinate are printed at the grid lines outside
the bottom and left edges of the graph.

Calling Sequence: The calling sequences are as follows:

CALL PLOT1 (NSCALE,NHL,NSBH,NSBV)

CALL PLOT2 (IMAGE, XMAX,XMIN,YMAX,YMIN)
CALL PLOT3 (BCD, X,Y,NDATA)

CALL FPLOT4 (NCHAR,NHABCDEF ...)

1. Description of Arguments--The following is a description of
the arguments:

a. NSCALE This is an array in the users program having one
or five locations. If the user wishes to use the standard
scale factors and decimal point positions, NSCALE should
equal zero. To alter the standard scale factors, NSCALE
must have five locations containing:

Location Contents Function

NSCALE(1) any nonzero value to alter standard factors

NSCALE(2) I printed values of the ordinate
(Y) sre 101 times the actual
value.

NSCALE(3) J printed values of the ordinate

(Y) have J digits following the
decimal point (J £ 8)

NSCALE(k4) K printed values of the abscissa
(X) are 10K times actual values

NSCALE(5) M printed values of the abscissa
(X) have M digits following the
decimal point (M < 9)

When standard scale factors are used, effective values of
I, J, K and M are 0,3,0 and 3 respectively.

. 7 September 1965 2-99

b. NHL This is the number of horizontal grid lines in the
graph image.

c. NSBH This is the number of spaces between horizontal
grid lines.

d. NVL This is the number of vertical grid lines in the
graph image.

e. NSBV This is the number of spaces between vertical
grid lines.

f. IMAGE This is a dimensioned array in the users orogram
consisting of N locations where: N=P* (NSBH*NHI~+1)
P=(NSBV*NVI+1)/6 rounded to nearest integee.

g. XMAX This is the value of the abscissa at the right-
most grid line.

h. XMIN This is the value of the abscissa at the leftmost

' grid line.

i. YMAX This is the value of the ordinate at the upper-
most grid line.

J. YMIN This is the value of the ordinate at the lower-
most grid line.

K. CD This is the Hollerith plotting character.

1.
the

X This is a single locatlon (or array name) containing
X coordinate(s) of the point(s) (X;, Y;).
m. Y This is a single location (or array name) containing
the Y coordinate(s) of the point(s) (Xj, Yi)-

n. NDATA This is the number of data points (Xy, Y) associ-
ated with the arrays X and Y. With NDATA equal to l a single
point will be plotted for a single execution of P10T3. With
NDATA equal to @, Q points (X;, Y;) taken in sequence will

be plotted for a single execution of PLOT3.

0. NCHAR This is the number of BCD (Hollerith) characters,
including blanks, in the label array.

7 September 1965 2-100

2. Restrictions on Arguments--The following are the restrictions
on arguments:

NHL > 0
NSBH > 0
NVL > 0
NSBV > 0

NSBV*NVL < 101

XMAX > XMIN

YMAX > YMIN

BCD > LEFT ADJUSTED BCD CHARACTER;
i.e., 1H%, 1HA, 1HL, ETC.

The image array must be dimensioned at least 867 (Decimal)
locations. LABEL and BCD must contain Hollerith information
only. The arguments which deal directly with data values
(XMAX, XMIN, YMAX, YMIN, X, Y,) must be in floating-point
mode.

(5) Deleting the Printing of Certain Portions of the Graph: There

is a provision for deleting printout of certain items. These are: ‘
1. Numeric values of the abscisse at the grid lines.
2. Numeric values of the ordinate at the grid lines.
%. Items 1. and 2.
4. The complete bottom horizontal grid line.
5. Items 1. and 2.
E. Ttems 2. and E.
7. Items 1., 2., and k4.

This is accomplished by entry OMIT anytime before execution of FPLOT.L.

CALL OMIT (ARG): where ARG is a positive number corresponding to one
of the above seven items.

To restore printing of any of the seven items, OMIT can be called with
ARG a negative number corresponding to the number of the item(s) to be
restored.

(6) Changing the Decimal Output Tape During Execution: An entry
PLTAPE is available for changing the output tape during execution in
cases where the desired tape does not coincide with the standard out-
put tape.

For FORTRAN IV, the calling sequence is: CALL PLTAPE. The next state-
ment must be WRITE (A, FORMAT), where A is the number of the output
tape and FORMAT is the number of a FORMAT statement. ‘

7 September 1965 2-101

205;102

For FORTRAN II, the calling sequence is: CALL PLTAPE (N, CHAN), where
CHAN is 1 if channel A, and CHAN is 2 if channel B. Example:

CALL PLTAPE (7,1) causes all plotting output to be
written on A7 until another CALL PLTAPE (N, CHAN)
is executed.

FORTRAN Subroutines for Using 65K

The T7O94 computers A, B, and C are equipped with 65K memory (i.e.,
65,536 words, rather than the standard 32,768 words). The additional
memory is upper memory or B bank, while the machine's normal memory
unit is the lower memory or A bank. Due to hardware design consider-
ations, B bank is usually treated as an alternate memory, except that:
1) certain machine features (e.g., trapping) always revert to A bank
and 2) others (e.g., I/0 activity) show a distinct preference for A
bank. For these reasons, upper memory has heretofore been inaccessible
to FORTRAN programs.

The FAP assembler (as well as SOS) will recognize the additional in-
structions needed to operate 65K. Either of two procedures may be
adopted, depending upon the requirements of the problem being coded.
Upper memory may be used as a data storage area, or it may be used to
contain an executable FORTRAN/FAP program. If used as a data storage
area, it is not possible for a FORTRAN program in A bank to refer
directly to quantities stored in B bank;but routines are provided to
transfer data back and forth. All 32,768 words of upper memory may
be used. If used to contain an executable FORTRAN/FAP program, the
two banks of memory will be occupied by more or less independent
FORTRAN/FAP programs; but provision is made for transferring control
back and forth between them and for the exchange of COMMON data. It
is not intended that both procedures be used in the same job. The
foli5§ing subroutines have been designed to facilitate the use of
65K memory by FORTRAN programmers.

(1) CALL STASH (X, I, J): This moves the array X of length I from

A bank to locations J through J+ I = 1 of B bank. I and J must be
integer variables or constents, with I > 1 and O < J'§.32T6T. The
mode of X is immaterial. The argument I designates the number of
words to be transterred, so that if X is a double-precision or complex
array, I will be double the array dimension; or if the entire array

is not to be transferred, two or more calls are required.

(2) CALL BACK (X, I, J): This moves I words from locations J through
J+ I -1 of B bank to fill the FORTRAN array X in A bank. I and J
must be interger variables or constants, witn I > 1 and 0< J < 3276T.
The mode of X is immaterial. The above comments on doublé:prézision
and complex arrays apply here also.

7 September 1965 2-102

(3) CALL COPY: The contents of lower memory from the normal FORTRAN
loading address (llkg) through the top of COMMON (77u618) are copied
into upper memory. The routine does not return to the calling routine,
but instead exits to the monitor.

(4) CALL B PROG: This statement may be executed anywhere within a
FORTRAN or FAP program in lower memory. It will transfer control to
upper memory at the first executable statement or instruction follow-
ing the CALL COPY which placed that program in B bank.

(5) CALL A PROG: This statement may be executed anywhere with a
FORTRAN or FAP program in upper memory. It will transfer control to
lower memory at the first executable statement or instruction follow-
ing the last CALL B PROG which had been executed.

(6) CALL FROM A (Y, K): This statement may be executed by a program
occupying upper memory. Y is assumed to be a variable in COMMON as
defined by this program. K words beginning with Y are filed with con-
tents of the corresponding COMMON cells of lower memory. Thus, if the
program in B bank defines: COMMON P, Q, R, S, T, ..., then the state-
ment CALL FROM A (B, 3) will place the current values of Q, R, and S
into B, C, and D, respectively. K must be an integer variable or con-
stant greater than zero. The mode of Y is immaterial.

(7) CALL FROM B (Z, L): Analogous to CALL FROM A, except that this
statement is to be executed by a program in A bank, and COMMON data
are transferred from upper to lower memory.

(8) Example for Using 65K: An example will help to clarify the use
of these routines. Let us assume that the programmer has a FORTRAN/
FAP program which is about to grow beyond single core memory capacity.
He must select certain portions of the job which can be detached,
subroutinized, and relegated to upper memory. Preferably, these should
be segments of the job which will not require the transfer of large
amounts of data between core banks. The main portion of the computa-
tion will occupy lower memory and will be called the A program. The
detached segments will occupy upper memory and will be called the B
program. Each must be a complete job in the FORTRAN sense; each must
have & main routine, and there must be no missing subroutines. COMMON
must be defined in such a way that variables which are evaluated in
one program, and used in the other, occupy the same position.

The two programs are loaded into the machine as separate, consecutive
jobs, each with I.D. and XEQ control cards. Either or both may be
compile and execute runs. The B program must be loaded first. All
data cards must follow the second, or A program (preceded by & ¥DATA

card). ‘

7 September 1965 2=103

2.5.1.3

The first executable statement of the B program should be CALL COPY.
As that job is loaded, its only effect is to place the program in
upper memory. This routine exits to the monitor which then proceeds
to process the A program.

When the A program has been loaded, it begins to execute in the normal
fashion. At various points in the program it will be necessary to per-
form some computation which resides in upper memory. To do this, the
A program assigns a predetermined code value to a control variable in
COMMON, and then executes the statement, CALL B PROG. Control is thus
transferred to the second executable statement of B program (i.e., the
statement following CALL COPY) which should be a CALL FROM A (n, 1) in
order to obtain the control variable.

B program may then use the control variable in an IF or computed GO TO
to determine what computation is to be performed. In carrying out this
computation, B program may obtain any necessary data from A program with
one or more CALL FROM A statements; and when finished, it may return to
A program by means of the statement, CALL A PROG. Control then reverts
to the statement in A program immediately following the CALL B PROG
which caused this diversion. The A program may obtaln any results pro-
duced by B program by giving one or more CALL FROM B statements. Either
program may terminate the execution by means of a CALL EXIT statement,
and error diagnostics and floating-point traps are handled correctly
from either program. DUMP and PDUMP will not output correctly from B
program, and the debugging package cannot be used in B program. I/O
statements may not be used in the B program unless the program is
accompanied by a special I/O package, obtainable in the form of a bina-
ry deck from the Programming Methods Section.

There are console switches which must be set for the use of 65K, so it
is advisable to note such usage on the job request card in big letters,
and suitable comments followed by a PAUSE card among the control cards
preceding B program may be helpful.

Subroutine decks are available.

CalComp Subroutines for IBM 709k

FORTRAN II utility routines developed for the CalComp 570 plotter are
available on the system library tape. Since these routines vary signifi-
cantly from the old routines, they require some explanation.

The current routines (PLOT, PLOTS, SYMBL4, TRW, TRWS) remain in the
FORTRAN II library without change in calling sequence. The new routines
(CCPLOT, CPLOTS, SYMBOL, and their associated routines) are recommended
for any future programming for the CalComp plotter, since the FORTRAN

IV routines are similar. A brief description of the new routines follows.

7 September 1965 2-10k

2.5.1.4

2.5.1.5

2.5.1.6

CALL CCPLOT (X, Y, IC)

CCPLOT is analogous to the current PLOT routine. It examines the

third argument to decide whether to lift or lower the pen, then moves
the pen to the position (X, Y). X and Y are both floating-point num-
bers, representing the distance (in inches) of the point from the
origin. IC is a fixed-point number: ¥ 2 lower the pen; t 3 raise the
pen. IC is a signed variable: Normally IC will be positive, indi-
cating that the plot is not yet finished. A negative IC instructs

the plot routine to establish a new origin at the coordinates (relative
to the current origin)given.

CALL CPIOTS (BUFFER, IDT, INDIC8)

Before attempting to do any plotting, CPLOTS (analogous to the current
PIOTS) should be called. This sets up a tape buffering area with the
dimensioned varisble BUFFER, The first member of the dimensioned array
should be used. For example, if 512 locations have been set aside for
DATA, the following statements would be required before any plotting
was attempted:

DIMENSICN DATA (512) .
CALL CPLOTS (DATA (I), 512, INDIC8)

IDT is the dimension of the tape buffering area, and INDIC8 is an end-
of-tape indicator. It is originally set to zero by the routine CPLOTS.
If an end-of-tape is detected while writing the plot tape (A6 or AT),
all tape writing in the CalComp routines are bypassed, and INDIC8 is
set nonzero. It is the programmer's responsibility to reset INDIC8 to
zero so that tape writing may resume {on A7 or A6). The programmer
should take the steps outlined in Section I of the CalComp Manual
whenever an end-of-tape is encountered.

CALL SYMBOL (X, Y, HEIGHT, BCD, THETA, N)

SYMBOL (analogous to the current SYMBLL) is used to generate plotting
symbols and alphanumeric characters,

Plotting Symbols: (X, Y) is the center of the desired symbol. HEIGHT
is the height in floating-point inches. BCD contains a fixed-point
integer (C-16) to specify symbol tepe. THETA is a floating-point
angle in degrees. A (-1) value of N specifies the pen is to be lifted
before moving to location (X, Y). A (-2) value allows pen to remein
lowered when moving to (X, Y).

Alphanumeric characters: (X, Y) is the lower left corner of first .
character. HEIGHT 1s the height in floating-point inches. Spacing

7 September 1965 2-105

2.5.2

2.5.2.1

2.5.202

2.5.3

2.5.3.1

2.5.3.2

of characters is 6/7 (HEIGHT). BCD is location of the first word of
Hollerith information. THETA is angle in floating-point degrees.
(THETA is positive counterclockwise; THETA = O indicates a character
perpendicular to X-axis.) N is the number of characters to be drawn.
A negative HEIGHT may be used to pick up words stored forward in core.

FORTRAN IV

UMPILOT Plotting Subroutine

See Paragraeph 2.5.1.1

FORTRAN Subroutines for Using 65K

See Paragraph 2.5.1.2
SUPPORT

FORTRAN Preprocessor

The FORTRAN Preprocessor is a 1401 program that is used to scan a
FORTRAN source program for errors. This helps the progrsmmer to elimi-
nate those errors prior to the program being submitted to the TO94 for
compilation.

The complete program writeup and listing is available in the Program-
ming Methods Section. This is contained in the DSD Memorandum,
"FORTRAN Preprocessor", dated T7/2/62.

Routines on the Cl Utility Tape

The Cl utility tape contains routines that are most frequently used
by GSFC programmers. The programs on the tape are located with CALL
CARDS which position the Cl tape to the record containing the desired
program. There are two ways to load the Cl program: 1) Cl Program
Control Card--Each routine on the Cl tape has its own CALL CARD that
loads the desired program when a LOAD CARDS button action is taken.
All key settings, tape setups, etc., must be done beforehand. 2)
General Call Card--The proper program is read from the Cl tape by
inserting the octal record number of the desired program in the address
of the keys, and by pressing the LOAD CARDS button. The control pro-
gram halts at location 268, at which time key settings, tape setups,
etc., are performed. The program is executed by pressing the START
button. The record numbers indicated in the following descriptions
are in octal.

7 September 1965 2-106

2.5.3.3

2.5.3.4

2.5.3.5

2.5.3.6

2.5.3.7

WDOMFP-Octal Mnemonic/Floating Point Core Dump (Record No. 1)

This prints on the on-line printer or writes on tape A2 the contents

of a selected part of core memory, in octal or floating decimal.

Octal Dumps may be taken with or without mnemonics. The contents of
the console registers are recorded each time WDOMFP is loaded from

Cl. Several dumps may be taken in succession. Starting and ending
addresses plus control information may be supplied either by control
cards (see writeup) or via the keys. Tape B2 is always required as

a scratch tape. This routine cannot be loaded with the General Cl Call
Card.

MXMRGE-Merge Mods with SQUOZE (Record No. 2)

This merges control cards and modification packet with SQUOZE tape on
B8. The control cards and mods may be read in on-line or from tape
A5. Output is a job tape, produced on A3, to be used for an SOS exe-
cution run.

IBTD-Tape Dump (Record No. 3)

This prints or writes on tape A2 the contents of selected records or
files of any tape on any channel (except A2). Input tape may be
dumped from its present position or may be rewound prior to dumping.
Input tape is not repositioned after dumping.

PPTDAC-Tape Duplicate and Compare (Record No. 5)

This reads any tape on channel A and copies onto or compares with any
tape on channel B. The number of records or files to be so treated
may be specified on control cards (see writeup) via the keys. Codes
are also provided to space either tape backward or forward any number
of records or files, or to rewind either tape, or to write an end-of-
file on the B tape. When duplicating or comparing records, an end~of -
file mark is cournted as a record. Miscomparison will produce an on=
line print giving the file and record number from the starting point
of that operation. If comparison is OK, no print occurs.

MXHSPR-Print High Speed from Log Tape (Record No. 12)

MXHSPR reads a B6 log tape and writes a duplicate on C6 while search-
ing for a time of 1ift-off in the logged data. Upon finding the time
of lift-off or using a time of lift-off of zero if no lift-off was
found, MXHSPR will search the B6 log tape for all data pertinent to
the first display. This data are unpacked, scaled and written on
the output tape. B6 and C6 are alternately searched for the various
displsys until all data has been recorded on the output.

7 September 1965 2-107

2.5.3.8 MXPRIG-Select TTY Data from Log Tape (Record No. 13)

This is accomplished by pressing the console entry keys corresponding
to subchannel numbers whose messages are to be printed. MXPRLG will
read the B6 log tape for complete messages corresponding to these sub-
channels. The messages are written on the output tape and MXPRLG con-
tinues to search the log tape and the intermediate tapes for additional
messages. The sense lites are used as a binary counter to count the
number of channels to be processed.

2.5.3.9 MXCHER-Print Selected Subchannels from Mercury Log (Record No. 14)

After reading a Mercury log tape on unit B6, select and print (off-
line) all 17-word blocks of information which are identified with a
subchannel number which has been selected for output. An option is
provided to permit the user to search the tape for several subchannels
in one pass or to perform a separate search for each subchannel re-
quested. In the first mode, entries are printed out in order in which
they occur on the tape, while in the second mode, all entries for a
given subchannel are printed together. The log tape is tested for
. density mode and 1is checked for readability.

2.5.3.10 HSINT-Decode and Print High Speed from Log Tape (Record No. 15)

This decodes and prints the high speed input data (B/GE, IP 7090, and
Bermuda High Speed Radar) from a Mercury log tape.

2.5.3.11 MXPOCL~-Print Mercury Log Tape in Octal (Record No. 16)

This reads a Mercury log tape on unit B6 and prints (off-line) the
information it contains in octal. B6 is set to the proper density
mode and is checked for readability. An option is provided to per-
mit the user to print the contents of the whole tape, or to begin
printing just prior to the lift-off indication, or to print those
entries time tagged within a selected time interval.

2.5.3.12 MSHSPL-Log Tape Plotting Program (Record No. 20)

This reeds a Mercury log tape on unit B6, extracts information desig-
nated as DCC Subchannel 3 and plots, via the DCC and local plotboards,
that information relating to Cape Kennedy plot-boards 1, 2, 3, 4

or Bermuda. The selection is made by key entry. Program stops occur
between various phases of the Mercury run.

2.5.3.13 GFCHEK-Checksum Corrector (Record No. 25)

This reads binary cards on-line and repunches the same information,
but with the checksum recomputed. Sense switch options indicate to

7 September 1965 2-108

2.5.3.14

2.5.3.15

2.5.3.16

2.5.3.17

2.5.3.18

the program whether input cards are row or column binary, and whether
they are two-word cards with the checksum in 9R (or Columns 4-6 in
the case of column binary) or 23-word cards with the folded checksum
in Columns 25-39 or 9L (or Column 3 in the case of column binary
cards). Output cards will be of the same format as of input cards.

OHCOl-Hollerith to OCT Pseudo-Op Card Image (Record No. 27)

This reads Hollerith cards on-line, and for each input card punches
on-line a set of OCT pseudo-op cards which, if assembled with the
user's program, will generate a card image corresponding to the input
card. A blank card will separate each card image set of OCT's. A
sense switch option permits reading input cards in pairs so that the
contents of Columns 1-6 of the first card will appear as a location
symbol in the first OCT produced in that set, and the second card will
be treated as described above.

WDCTS-Card-to-Tape Simulator (Record No. 32)

WDCTS will transcribe cards from the card reader to any desired tape
in either BCD or column binary as designated by the standard control
punching in the cards. The format of the tape record is exactly like
that written by an off-line 1401, except that the information in
Columns 73-80 is replaced by blanks for Hollerith cards and by zeros
for column binary cards. Special control cards may be used to cause
the program to write an end-of-file mark or to cause the program to
clear itself out of memory and simulate the action of the Load Cards
key. Each Hollerith card is checked for illegal punches.

SUMMARY -Summarize SOS SQUOZE Tape Statistics (Record No. 36)

This locates and reads preface record from an A5 SQUOZE tape result-
ing from an SOS compilation or PS run and prints, on-line, various
information affecting the permissible size and mod deck which the
examined program will accept.

COLBER-Update Symbolic Tape, Produce Symbolic from Listing Tape
(Record No. 41)

This routine is used to update symbolic tapes by adding or deleting
sections of & program by using the alter number generated by SOS.

MXILCO-Print Real-Time CORE Output (Record No. 57)

This reads a tape on unit B6 containing real-time CORE (RTCOR) out-
put, and prints (off-line) the information it contains in the formats
specified by codes on the tape. Output is produced on unit A3.

7 September 1965 2-109

(2-110 Blank)

2.5.3.19 SHARE Library Index

A cross-reference index to the program library is maintained by the
Data Systems Division Programming Methods Section. It consists of a
Key Word in Context (KWIC) index to the library routines on file, plus
the title and descriptive listings sorted in various orders.

The subject codes are those defined by SHARE, but extended by several
new categories of a more specialized nature and applicaeble to the type
of programs used at the Goddard Space Flight Center. The SHARE routines
are identified by a serial number (in addition to the customary symbolic
name) consisting of the letters SDA (SHARE Distribution Agzency), follow-
ed by a four-digit number. It is planned to include programs other than
those distributed by SHARE in the program library. These programs will
beidentified by a serial number which begins with letters other than
SDA.

More complete informaetion on any of the routines in the cross-reference
index is available in either the SHARE library abstract listing or in
Building 3, Room 12T7T.

There is also available a catalog of abstracts which lists programs
and subprograms contained in the reissued SHARE library, and which is
supplemented by routines from both Goddard Space Flight Center per-
sonnel and other personnel. Those desired programs unattainable in
the reissued SHARE library may be located in its predecessor dated
10/30/63; however, this old SHARE library catalog is not being main-
tained.

The programs are categorized according to two character classification
codes and are listed in alphanumeric order within each code. SHARE
codes consist of a letter followed by a digit. These codes have been
enlarged as a result of several locally defined categories of a more
specialized nature. Consequently. these codes consist of a period
which is followed by two charactexrs.

7 September 1965 Index 2-1i

INDEX TO CHAPTER 2

. 2.2.1.3(4); 2.4.2.1(3)5;
2.4.2.1(3)6
See also under stem words
$ 2.2.1.1
See also under stem words
$* 2.2.1.1(6); 2.2.1.2(12)
* 2.2.1.4
See also under stem words
(===

See also under stem words

GOPAC
processor 2.4.2.3

570 Plotter 2.4.1.4(1); 2.5.1.3

727, 729, and T330 Tape Units
(ref) 2.3.2.3

1301 and 132 Disk (ref) 2.3.2.4

1401 machine
programs 2.5.3.1

7090/ 7094 machine
annotated bibliography 2.3.1;
2.3.5
memory usage 2.5.1.2
operation 2.3.2.1; 2.3.2.2

T090/7094 machine language
1/0 2.2.3.4

A
ABSMOD 2.2.1.2(6)

Absolute origin 2.2.1.3(3)

ACOSD 2.4.1.4(1); 2.k.2.1(3)1
ACOSR 2.4.1.4(1); 2.4.2.1(3)1
ALTER 2.2.1.2(15)
*ALTER 2.2.1.2(17); 2.2.1.2(18)
ASIND 2.4.1.4(1); 2.4.2.1(3)1
ASINR 2.4.1.4(1); 2.4.2.1(3)L
ATAN 2.4.1.4(2)
ATANGD 2.4.1.4(1); 2.4.2.1(3)L
ATANGR 2.h4.1.4(1); 2.4.2.1(3)1
B
BACKSPACE 2.2.1.2(4)5
BASIC 2.2.1.2(4)
Binary Symbolic subroutines 2.4.1.3
BSF 2.2,3.h4
(BSR) 2.4.1.4(3)
BSS 2.4.1.3
(BsT) 2.4.1.4(3)
(BUF) 2.4.1.4(3)
C

Cl tape 2.5.3.2

CalComp
570 plotter 2.4.1.4(1)
subroutines 2.5.1.3; 2.5.1.5

7 September 1965

Index 2-ii

INDEX TO CHAPTER 2 (Cont'd)

C (Cont'a)

CALL L)7; 2.2.1.3(3);

(
(4); 2.5.1.3(1)-(7);

Card-to-Tape Simulator 2.5.3.15

* CARDS COLUMN 2.2.1.4(T7)

* CARDS ROW 2.2.1.4(18)

CCPLOT 2.4.1.4(1); 2.5.1.3;
2.5.1.4

CHAIN 2.4.1.4(k)

* CHAIN 2.2.1.4(16)

Channel tape assignments 2.2.3.5

Characters, special 2.2.1.3(3)

Checksum corrector 2.5.3.13

CK 2.2.1.3(3)

CLOCKS 2.4.1.4(1)

COBOL

annotated bibliography 2.3.k4
Coding sheets (ref) 2.3.6

COL8ER 2.5.3.17

* Comment 2.2.1.4(13)

Commercial Translator (ref) 2.4.2.2

COMMON 2.2.1.4(4); 2.5.1.2

Configuration
machine 2.
system 2

Control cards
s 2.2.1
format 2.2.1
IBJOB 2.2.1.
IBLDR 2.2.1
IBSYS 2.2.1

Core, usage 2.5.1.2; 2.5.1.2(8)

CORE
output, print realtime 2.5.3.18

cos 2.4.1.4(2)

COSD 2.4,1.4(1);

2.4.1.4(1);
2.5.1.5

2.4.2.1(3)1

CPIOTS 2.5.1.3;

CPREST 2.2.1.2(16)
(CsH) 2.4.1.4(3)
CT (ref) 2.%k.2.2
D
Data Channel 2.1.2
Data Communication Channel 2.1.2
Data Systems Division
system library 2.4.1.4(1);
2.4.2,1(3)
$DATA 2.2.1.2(8)

* DATA 2.2.1.4(9)

7 September 1965 Index 2-iii

INDEX TO CHAPTER 2 (Cont'd)

D (Cont'a)

DATAN 2.4.,1.4(2) -Pisk 2.1.2

reference 2,3.2.4
$DATE 2.2.1.1(5); 2.2.1.2(11)

$DDICT 2.2.1.2 Note
* DATE 2.2.1.4(10)

DK9OUT 2.4.2.7

DCC 2.1.2

$DKEND 2.2.1.2 Note
DCOS 2.4.1.4(2)

DLOG 2.4.1.4(2)
DD 2.2.1.2(5); 2.2.1.2(6)

DMOD 2.4.1.4(2)
Debug, dictionary 2.2.1.2(5)6;

2.2.1.2(5)8 Documents
annotated bibliography 2.3.2 ff.
DEBUG 2.4.2.1(3)5 listed by form number Table 2-4
listed by subject 2.3.2 ff.
* DEBUG 2.2.1.4(12) subject index Table 2-3
Deck, structure 2.2; 2.2.2 (DRs) 2.4.1.4(3)
DECK 2.2.1.2(5); 2.2.1.2(6) DSIN 2.4.1.4(2)
Decode 2.5.3.10 DSQRT 2.4.1.4(2)
DEXP 2.4.1.4(2) .DSTRN 2.4.2.1(3)5
DFAD 2.4.1.4(2) .DSTRO 2.k.2.1(3)5
DFDP 2.4,1.4(2) Dump 2.2.3.3
DFMP 2.4.1.4(2) DUMP 2.2.3.2(4); 2.4.1.4(1)
DFSB 2.4.1.4(2) E

Dictionary of symbols 2.2.1.2(5)6; EATAN 2.4k.1.4(2)
2.2.1.2(5)8

ECOS 2.4.1.4(2)
DINT 2.4.1.4(2)

EEXP 2.4,1.4(2)
Discrepancy Report 2.1.h

(EFT) 2.4.1.4(3)

7 September 1965 Index 2-iv

INDEX TO CHAPTER 2 (Cont'd)

E (Cont'd) F
ELOG 2.4.1.4(2) FAP 2.4.1.2
7090/ 7094 programming (ref) 2.3.3.2
EMAXT 2.4.1.4(2) assemblies, labelling 2.2.1.4(15)
memory ussge 2.5.1.2(8)
EMINI 2.4.1.4(2)

* FAP 2,2.1.4(8)
* ENDAL 2.2.1.2(19)

FATN 2.4.2.1(3)2
ENDFILE 2.2.1.2(k4)5 -
FBST 2.4,2,1(3)4
$ENTRY 2.2.1.2(10); 2.2.1.3(2) -
FCAB 2.4.2.1(3)2
.ERAS 2.4.2.1(3)6 -
FCAS 2.4.2.1(3)2

Errors 2.1.3; 2.1.4k; 2.5.3.1
FCLG 2.4.2.1(3)2

ESIGN 2.4.1.4(2)
FCNV 2.4.2.1(3)k
ESIN 2.4.1.4(2) -
FCSC 2.4.2.1(3)2
ESQRT 2.4.1.4(2) =
FCSQ 2.4.2.1(3)2
ETANH 2.4.1.4(2) -
FCXP 2.4.2.1(3)2
(ETT) 2.4.1.4(3) -
FDAT 2.4.2.1(3)2
EVEN 2.2.1.2(5)4 =
$FDICT 2.2.1.2 Note
(EXB) 2.4.1.4(3)
FDIG 2.4.2.1(3)2
(EXE) 2.4.1.4(4) -
FDMD 2.4.2.1(3)2
$EXECUTE 2.2.1.1(4) -
FDMP 2.4,2.1(3)1
(EXEM) 2.4.1.4(k) -
FDSC 2.4.2,1(3)2
EXIT 2.4.1.4(k) =
FDS 2.4.2.1(3)2
EXP 2.4.1.4(2) Q (3)2

FDVCHK 2.4.2.1(3)3

FDX 2.h.2.1(3)2

T September 1965

Index 2-v

INDEX TO CHAPTER 2 (Cont'd)

F (Cont'd)
FDXP 2.4.2.1(3)2 FORTRAN
annotated bibliography 2.3.5
FEFT 2.4.2,1(3)% loader 2.4,1.3
reprocessor 2.5.3.1
(FIL) 2.4.1.4(3) Prep >3
FORTRAN II
File Processor 2.4.2.3 assembling 2.2.2.13
Assembly Program see FAP
FILES 2.2.1.2(4) compilation 2.2.2.10; 2.2,2.11;
2.2.2.12; 2.2.2.13; 2.2.2.1k4
FIOB 2.4.2.1(3)k compilation, binary decks 2.2.2.12
compiler 2.4.1.1
FIOCS 2.2.1.2(4) debug 2.2.2.1k4
diagnostic 2.2.3.1(1)
FIOH 2.4.2.1(3)4 double precision math. 2.4.1.4(2)
dump routines 2.2.3.1(2)
FIOS 2.4.2.1(3)4 execution 2.2.2.9; 2.2.2.13;
2.2.2.14
FIOU 2.4.2.1(3)% library 2.4.1.4
mathematics 2.4.1.4(1); 2.4.1.4(2)
Fixed point See FORTRAN II & IV plotting routines 2.5.1.3
single precision math. 2.4.1.4(2)
Floating point system library 2.2.3.1
dump 2.2.3.3; 3.3 transfer card 2.2.1.4(18)
See also: FORTRAN II & IV utility routines 2.4.1.4(1); 2.5.1
Version III 2.1.1; 2.2.1.1(4) Note
FLOG 2.4.2.1(3)2 Version III, processor 2.4.2.6
FLOW 2.2.1.2(4) FORTRAN IV
binary mode tape 2.2.3.2(2)
S 2.1.1; 2.1.2; 2.4 binary tape, execution 2.2.2.5
control cards 2.2.1.4 compatibility 2.1.1
IBSYS combined system 2.1.2 compilation 2.2.2.1; 2.2.2.3;
master tape 2.1.3 2.2.2.4
complex math. 2.2.3.2(1)3
$MMSYS 2.2.1.1(5) debug 2.2.2.8 -
double precision math. 2.2.3.2(1)2
* FORMAP 2.2.1.4(L) execution, binary decks 2.2.2.2
execution, binary tape 2.2.2.5
Forms (ref) 2.3.6 I/0 library 2.4.2.1(3)4
mathematics 2.4.2.1(3)1
mathematics, accuracy 2.2.3.2

T September 1965 Index 2-vi

INDEX TO CHAPTER 2 (Cont'd)

F (Cont'd)
FORTRAN IV (Cont'd) FSIDI 2.4.2.1(3)k
modification of PREST decks
2.2.2.6 FSLDO 2.4.2.1(3)k
multiple compilations 2.2.2.3
overlay 2.2.2.7 FSLI 2.4h.2.1(3)k
plotting routines 2.5.1.3
punch 2.2.3.2(3) FSLITE 2.4.2.1(3)3
single precision math.
2.2.3.2(1)1 FSLO 2.4.2.1(3)k
utility routines 2.4.2.1(3)1;
2.5.1 FSQR 2.4.2.1(3)2
Version 12, debug 2.2.3.2(5) -
FSSWTH 2.4.2.1(3)3
FOUT 2.4.2.1(3)4
FTNH 2.4.2.1(3)2
FOVERF 2.4.2.1(3)3 -
FULIST 2.2.1.2(5)
FPARST 2.4.2.1(3)6
FVIO 2.4.2.1(3)4
FPRN 2.4.2.1(3)k -
FWRB 2.4.2.1(3)k
JFPTRP 2.2.1.3(4); 2.k.2.1(3)5
FWRD 2.4.2,1(3)4
FPUN 2.4.2.1(3)4 -
FWRO 2.4.2.1(3)k
FRCD 2.4.2.1(3)k4
FWRU 2.4.2.1(3)k
FRDB 2.4.2.1(3)4 -
FXEM 2.4.2.1(3)6
FRDD 2.4.2.1(3)4
FXP 2.4.2.1(3)2
FRDU 2.4.2.1(3)k
FXPF 2.4.2,1(3)2
FRWT 2.4.2.1(3)4 -
G
FSCN 2.4.2.1(3)2 =
GFCHEK 2.5.3.1
FSEL 2.4.2,1(3)k 2+3+43
GO 2.2.1.2(4); 2.2.1.2(4) Note
FSLBI 2.4.2.1(3)4
FSLBO 2.4.2.1(3)4

7 September 1965

Index 2-vii

INDEX TO CHAPTER 2 (Cont'd)

H

Hollerith to OCT pseudo-op cards
2.5.3.14

HSINT 2.5.3.10

I
IABS 2.4.1.4(2)
IBCBC 2.4.2,1(5)
IBDBC 2.4.2.1
.IBDBI 2.4.2.1(3)5
IBDBL 2.h.2,1
IBFTC 2.4k.2.1(1)

$IBFTC 2.2.1.2(5)
options 2.2.1.2(5)

IBJOB 2.4h.2.1
control cards 2.2.1.2
processor 2.4.2.1

$IBJOB 2.2.1.2(k4)
options 2.2.1.2(4)

IBLDR 2.4,2.1; 2.4.2.1(4)
control cards 2.2.1.3

$IBIDR 2.2.1.2(7); 2.2.1.3(1)
options 2.2.1.2(7)

IBLIB 2.4.2.1(3)

IBMAP 2.1.1; 2.4.2.1(2)

assembling 2.2.2,3; 2.2.2.4

$IBMAP 2.2.1.2(6)
count options 2.2,1.2(6)

$IBREL 2.2.1.2(1k)
IBSFAP 2.4.2.5

IBSYS 2.4.2
control cards 2.2.1.1
debug 2.2.3.2(5)
FMS combined system 2.1.2
master tape 2.1.3
utility routines 2.4.2.7

LIBSYS 2.4.2.1(3)5

$IBSYS 2.2.1.1(1);
2.2.1.4(1)

2.2.1.2(1);

IBTD 2.5.3.5
ICOoS 2.4,1.4(2)
$1D 2.2,1.1(2); 2.2.1.2(2)
* Tdentification 2.2.1.4(2)
$IEDIT 2.2.1.2(4)6;

2.2.1.2(15)
options 2.2.1.2(14)

2.2.1.2(7);

IEXP 2.4.1.4(2)
IFDP 2.4.1.4(2)
IFMP 2.h.1.4(2)
110G 2.4.1.4(2)
$INCLUDE 2.2.1.3(%4)

Index registers 2.2.1.2(5)

7 September 1965

Index 2-viii

INDEX TO CHAPTER 2 (Cont'd)

I (Cont'd)

I/O units, standard

2.2.1.2(15)1;
2.2.1.2(16) 2

(10B) 2.4.1.4(3)
10CS 2.4.2.1(3)5; 2.k.2.4
. I0CS 2.4,2,1(3)5
.I0CSB 2.4.2.1(3)5
.IOCSF 2.4.2.1(3)5
.I0CSL 2.4.2.1(3)5
.IocsM 2.4.2.1(3)5
.IODEF 2.4.2.1(3)5
IODINE 2.2.3.1(3)
I0EX 2.2.1.2(4)
. IOEX 2.4.2.1(3)5
(10H) 2.4.1.4(3)
(108) 2.4.1.4(3)
(10U) 2.4.1.4(3)
ISIN 2.4.1.4(2)
ISQRT 2.4.1.4(2)
J
.JBCON 2.4.2.1(3)5
$JOB 2.2.1.1(3); 2.2.1.2(3)

KEEP 2.2.1.

Keys, setting

KWIC Index 2
reference

$LABEL 2.2.1.

* LABEL 2.2.1

LABELS 2.2.1.

LB 2.2.1.

LIBE 2.2.1.

* LIBE 2.2.1

Library routines
index 2.5.3.

Links
LIST

* LIST

* LIST8 2.2.1.

Load, binary decks

Loader

LoG 2.4.1,

Log tape
print, high
2.5.3.10

TTY data selection

5.
2.

2.2.1.

2.2.1.

2.4.2.
binary symbolic subroutines

K
2(5)6;

2.2.3.3

2.2.1.2(5)8

3.19
3.3.1
L

3(5)

A(15)

2(4); 2.2.1.3(5)
3(3)

2(7)

A(17)

2.4.1.4(1)
19

See QOverlsy

2(5); 2.2.1.2(6)

4(5)
4(5)
2.2.2.4

1(k)
2.4.1.3

4(2)

speed 2.5.3.7;

2.5.3.8

7 September 1965

Index 2-ix

INDEX TO CHAPTER 2 (Cont'd)

L (Cont'd)

IOGIC 2.2.1.2(4); 2.2.1.2(4) Note
JIOVRY 2.2.1.3(4); 2.k.2.1(3)5
.LXCON 2.2.1.3(4); 2.4.2.1(3)5
JIXSL 2.4.2.1(3)5

M
m*ALTER See *ALTER
M90 2.2.1.2(5); 2.2.1.2(6)
MOk 2.2.1.2(5); 2.2.1.2(6)
Mok/2 2.2.1.2(5); 2.2.1.2(6)
Machine test subroutines 2.4.2.1(3)3
Macro Assembly Program See MAP
Magnetic tapes See Tapes
MAP 2.2.1.2(k); 2.2.1.2(4) Note

T090/ 7094 programming (ref)
2.3.3.3

Master Tape 2.1.3
Memory usage 2.5.1.2; 2.5.1.2(8)
Mercury Log Tape 2.5.3.9; 2.5.3.10
plotting program 2.5.3.12
print in octal 2.5.3.11

Merge 2.5.3.4
MFTC 2.2.1.2(6)

MINIMUM 2.2.1.2(L4)

Mnemonics, dump 2.2.3.3
Monitor See IBSYS
MXCHER 2.5.3.9
MXHSPL 2.5.3.12
M{HSPR 2.5.3.7
MXILCO 2.5.3.18
MXMRGE 2.5.3.k
MXPOCL 2.5.3.11
MXPRIG 2.5.3.8

N
$NAME 2.2.1.2(9)
Names 2.2.1.1(4)
NO () 2.2.1.2(6)
NO ---

For instructions beginning with
NO, see the stem word, e.g.,
NOLIST, see LIST

o
2.5.3.1k

2.2.1.4(6)

OCT pseudo-operations
Octal instruction

Octal mnemonic, core dump

2.5.3.3
Octal operations, dump 2.2.3.3

$0EDIT
options

2.2.1.2(16)
2.2.1.2(16)

7 September 1965 Index 2-x

INDEX TO CHAPTER 2 (Cont'd)

0 (Cont'd)
OHCOL 2.5.3.1k PREST decks 2.2.1.2(15); 2.2.1.2(16)
2.2.1.2(16) Note
() oK 2.2.1.2(6) modification 2.2.2.6
Origin, sbsolute 2.2.1.3(3) Print, high speed 2.5.3.7; 2.5.3.10
subchannels 2.5.3.9
$ORIGIN 2.2.1.2; 2.2.1.3(3)
symbol options 2.2.1.3(3) Printer 2.1.2
Output See I/0 Programming, aids 2.2.3
Overlay 2.2.1.2(4)7; 2.2.1.3(3); Programs
2.2.1.4(16); 2.2.2.7; Fig. 2-5 KWIC index 2.3.3.1; 2.5.3.19
support 2.5.3
P unique 2.4.1.4(1)
utility 2.4.2.7; 2.5
90PAC processor 2.4.2.3
$PAUSE 2.2.1.1(T); 2.2.1.2(13) .
Qualifier 2.2.1.2(k4)
* PAUSE 2.2.1.4(1k)
R
PDUMP 2.2.3.2(4); 2.4.1.4(1) -
-RAND 2.4.2.1(3)5
Peripheral equipment 2.1.2
(RCH) 2.4.1.4(3)
PLOT 2.5.1.1(3); 2.5.1.3
(RDC) 2.4.1.4(3)
PLOTS 2.5.1.3
(RDS) 2.4.1.4(3)
Plotter 2.4.1.4(1); 2.5.1.3
REF 2.2.1.2(5) & (6)
Plotting subroutines 2.5.1.1;
2.5.1.5; 2.5.3.12 Reference cards (ref) 2.3.6
calling sequence 2.5.1.1(4)
See also: UMPLOT REIMOD 2.2.1.2(6)
PPTDAC 2.5.3.6 Report Generator 2.4.2.3
PREST 2.2.1.2(6); 2.2.1.2(16); (RER) 2.4.1.4(3)

2.2.1.2(16) Note

T September 1965 Index 2-xi

INDEX TO CHAPTER 2 (Cont'd)

R (Cont'd)
REQ 2.2.3.4 (sLI) 2.4.1.4(3)
RESTART 2.4.2.8 (s1wo) 2.4.1.4(3)
REW 2.2.1.3(3) S0S
compilation, tape statistics 2.5.3.16
(REW) 2.4.1.4(3) memory usage 2.5.1.2

update symbolic tape 2.5.3.17
REWIND 2.2.1.2(4)5

SOURCE 2.2.1.2(4); 2.2.1.2(14)
(RLR) 2.54.1.4(3)

(sPH) 2.4.1.4(3)
Routines See Programs

SQRT 2.4.1.4(2)
* ROW 2.2.1.4(19)

SQUOZE 2.5.3.4

RTCOR 2.5.3.18 tape statistics 2.5.3.16
(RTN) 2.4,1.4(3) SRCH 2.2.1.2(15)
RUN 2.2.3.4 (SRD) 2.4.1.4(3)
(RWT) 2.4.1.4(3) Status Report 2.1.4

s (sTB) 2.4.1.4(3)
(scH) 2.4.1.4(3) (sTH) 2.4.1.4(3)
SDA 2.5.3.19 (sTHD) 2.k4.1.4(3)
SDD 2.2.1.2(5); 2.2.1.2(6) (sTHM) 2.L4.1.4(3)
(sET) 2.4.1.4(3) Subchannels, print 2.5.3.9
SHARE 2.5.3.19 Subroutines

listing 2.4.2.1(3)5

SIFT 2.1.1; 2.4.2.1(3)6 See also: Programs
SIN 2.4.1.4(2) SUMMARY 2.5.3.16
SIND 2.h.1.4(1); 2.k.2,1(3)1 Supplies

annotated bibliography 2.3.6

7 September 1965 Index 2-xii

INDEX TO CHAPTER 2 (Cont'd)

S (Cont'd)
Support routines 2.5.3 Tapes
compare 2.5.3.6
SYMBLL 2.4.1.4(1); 2.5.1.3 dump 2.5.3.5
duplicate 2.5.3.6
SYMBOL 2.4.1.4(1); 2.5.1.3; maintenance 2.1.3
2.5.1.6 master 2.1.3
system 2.4
* SYMBOL TABLE 2.2.1.4(11) utility 2.5.3.2
Svmbolic tape, update 2.5.3.17 (Tco) 2.4.1.4(3)
Symbols 2.2.1.2(5)6; 2.2.1.2(5)8 (TEF) 2.4,1.4(3)
SYSCK 2.2.1.2(15); 2.2.1.2(16); (TES) 2.4.1.4(k)
2.2.1.3(3)
Test indicator subroutines
SYSIN 2.2.1.2(15) 2.4.2.1(3)3
SYSLB 2.2.1.2(15); 2.2.1.2(16); TEXT 2.2.1.2(T)
2.2.1.3(3)

$TEXT 2.2.1.2 Note
SYsMopD 2.2.1.2(6)
(TRC) 2.4,1.4(3)
SYSoU 2.2.1.2(16)

TRW 2.5.1.3
System

configuration 2.1.3 TRWS 2.5.1.3
Discrepancy Report 2.1l.k4
library 2.4.1.4(1); 2.%.2.1(3) (TsB) 2.4.1.4(3)
nemes 2.2.1.1(4)
Status Report 2.1.4 (TsH) 2.4.1.4(3)
tepes 2.4

(TsaM) 2.L4.1.L4(3)
SYSUT 2.2.1.3(3)
y

T

- UMPLOT 2.2.3.2(6); 2.4.1.4(1);
TANH 2.4.1.4(2) 2.4.2.1(3)1; 2.5.1.1

compatibility 2.2.3.1(4)

Tape units 2

1.2
reference 2.3.2.3 UNITXX 2.4.2.1(3)4

T September 1965

Index 2-xiii
(Last Page)

INDEX TO CHAPTER 2 (Cont'd)

U (Cont'd)
UT 2.2.1.3(3)
Utility
routines 2.4.2
tape 2.5.3.
W
WDCTS 2.5.3.15
WDOMFP 2.5.3.3
WEF 2.2.3.4
(WEF) 2.4.1.4(3)
(WER) 2.4.1.4(3)

(WLR)
(WRS)

(wrc)

XIT

X1.0C

* XEQ

2.4.1.4(3)
2.4.1.4(3)
2.4,1.4(3)
X
2.4.2,1(3)6
2.4.1.4(k)
2.2.1.2(5)

2.2.1.4(3)

‘ 25 February 1966 3-1

CONTENTS

CHAPTER 3 CAMEO

' Paragragh ' Page
3.1 CAMEO SYSTEM DESCRIPTION. 3-1

3.1.1 SYSTEM STRUCTURE v v v v v o o . . 3-1

3.1.2 MACHINE CONFIGURATION. . . 3-3

3.1.3 SYSTEM TAPE MAINTENANCE. 3-5

3.1.4 ERROR REPCRTING. . . 3-5

3.2 DETAILED PROCEDURES + o o . . . 3-5

3.2.1 CAMEO CONTROL COMMANDS . . 3-5

3.2.1.1 Encoding Control. , 3-6

3.2.1.2 Execution Control . 3-6

3.2.2 CAMEO CONSOLE SETTINGS 3-6

3.2.2.1 Encode and Execute. 3-6

3.2.2.2 Encode and Save on Self- Loading Tape 3-7

3.2.2.3 Load and Execute. e . 3-7

3.2.2.4 Postmortem Decimal Dump . . 3-7

3 . 3 CAB{EO BIBLI%RAPHY 3 . 3] 3-9

3.3.1 PROGRAMMING IN MYSTIC: A PRIMER ON THE USE OF CAMEO 3-9

3.3.2 CAMEO SYSTEM DESCRIPTION B f e

3.3.3 CAMEO: UNIVAC 1107 USAGE. 3-9

‘ 3.3.4 CAMEO: TIBM 709k USAGE 3-9

25 February 1966 3-ii

CONTENTS (Cont'd)

Paragraph Page
3.3.5 MYSTIC DICTIONARY ROUTINE. 3=10
3.3.6 R15 CAMEO QUICK DIAGNOSTIC FUNCTION PROGRAM
DESCRIPTION e« o « o« « « 3-10
3.3.7 RluB TAFPE MODIFICATION ROUTINE PROGRAM
DESCR IPTION 3 . . 3“10
3.h PROGRAMMING SUPPORT PACKAGES. + v v ¢ o o o o o o o« o o o o o+ 3=11
3.hk.1 UTILITY PACKAGE. G Lo M 1
3.4.1.1 Print-out Memory e L
3.4.1.2 Interval Core Dump. . « « « « + o« o « o« » 3=11
3.4.1.3 Change of Code. « . « « « « « « « o « « « 3=11
3.k.2 ARITHMETIC PACKAGES. . . . e e e e e e . 3=11
3.k.2.1 Vector Arithmetic Package e e e e e e+« 3=11
3.h.2.2 Matrix Arithmetic Package 3-11
3.k.2.3 Fourier Series Arithmetic Package 3-12
3.k.2.4 Power Series Arithmetic Package 3-12
3.k.2.5 High-Speed Elementary Functions
Package. S 1 2
3.&.3 SPECIAL PURPOSE PACKAGES v &« ¢ ¢ o + o« « « o o s « o 3=12
3.4.3.1 Realtime Adapter. 3=12
3.4.3.2 FACIL (FORTRAN Assembly Compatible
Interface Linkage) . G o =
3.4.3.3 Mystic Dictionary Routlne e e e e e . . . 312
3.4.3.4 Drum Storage Adapter. 3=13
3.&.& PERIPHERAL EQUIPMENT UTILITY ROUTINE . . . « « « «» « 3-13
3.4.4.1 Table of Contents 3-13
3.4.4.2 Tape Modification Program e e e e e . e . 3-13
3.4.4.3 Mystic List« . . . 3=13
3.5 ENCODER TAPES . « « « « & o o « o o o o o o o o o o« o« o« « « « 3=1b4
3.5.1 ENCODER FOR UNIVAC 110T. . & & « « « & o« o « « o . . 3=1k
3.5.2 ENCODER FOR IBM TO94 (32K) . e e e e e e e e .. 321k
3.5.3 ENCODER FOR IBM TO9h (65K) . B T £
3.5.h ENCODER FOR IEM 7004 (DOUBLE PRECISION). B
3.6 FUNCTIONAL AIDS AND CODING SHEETS . . & « &« + « « « o o« « « « 3=15
3.6.1 MYSTIC STORAGE MAP & + v ¢ « o o « « +« &« . . 3=15

3.6.2 CAMEO CODING SHEET . + + 4 « &« & & = o « « o « « « « 3=15

25 February 1966 3-iii

Paragraph
3.7
3.8

Figure

L.UL:.)U)
w N

Table

CONTENTS (Cont'd)

JOB FROCEDURE

AOPB FUNCTIONAL SUBROUTINES . . .

JLLUSTRATIONS

Flow Diagram of CAMEO Operation .
Mystic Storage Map Form
CAMEO Coding Form

TABLES

Ma jor Computer Equipment. . . .
Peripheral Equipment.

25 February 1966 3-1
CHAPTER 3
CAMEO
3.1 SYSTEM DESCRIPTION

3.1.1

This chapter describes the Computer-independent Abstract Machine-
language Encoder and Operatihg-system and its use. The CAMEO system
is available on all Goddard Space Flight Center Data Systems Division
large scale computers.

CAMEO is designed to process a variety of related or unrelated jobs
sequentially or individually with complete operator convenience and
control. With complete control in the hands of the operator, jobs
are processed more responsibly and intelligently with less attention
to strictly operational requirements demanded of the programmer.

SYSTEM STRUCTURE

There is a CAMEO for the TO9L4 data processing equipment and a CAMEO
for the 1107 data processing system. On both systems, CAMEO is on a
self-loading magnetic tape, a copy of which is stored at the console
of the A, B, C, E, F, G, H, and J computers.

The flow diagram (Figure 3-1) illustrates the various functional com-
ponents of CAMEO and the paths of control between them. The notations
on each line indicate the command, condition, or action which causes
that path to be taken.

Tape assignments within CAMEO are entirely at the option of the pro-
grammer and, for production work, at the option of the operator as
well. Any tape may be used in a BCD mode or a binary mode or in a
mixed mode. For instruction in the use of CAMEO, consult Programming
in Mystic: A Primer on the Use of CAMEO, X542-64-393, December 196%.

[QV
]
o

25 February 1966

3dvi 1—-S NO
WvYd90dd
A3LdNYY3LNI
3JLiam

NOILVHIdO OFNWVYD 40 WYHOVIA MOTI4 |—E 3dN9ol4d

1¥VLS

NMOQa

N%mm

ANVYWWOD T,

WVYHO0ud
a3 1ndwood
31LN23X3

3dv.l 1—-S NO
NWVYd903dd
az31dWoDd
JLigm

NMOQa

N%mm

HOSIAY3dNS
O3IWVD
avo~i

|]
3dWOD
aNVWWOD ", aNVYIWWOD ,°
Advi Wou4d ¢ |
aNVWWOD ,,0€,, 311dW0D

NWYYD04dd
a3 1dnNOoD
avon

]

o) mmmh_v_

d40103713Ss
NVYH90dd
Advl T1-S

O=S A3

LINN 11— S WOYH 3dV.L AvOo-l

SA3IM 13S

ANVIWIOD ,0€,,

SQyvOo WOodd

43T11dWNOD
O3INVD

avon

NMOQ

LINN 1= S NO 3dVvl 11-S LNNOW

‘ 25 February 1966 3-3

3.1.2 MACHINE CONFIGURATION

The programmer using the Goddard Space Flight Center computer complex
has a vast quantity of data processing equipment at his disposal. The
CAMEO system operates on these large scale computers. A partial list
of this equipment is given in Table 3-1. In addition, there exists an

associated collection of peripheral equipment for off-line support.
A partial list of this equipment is given in Table 3-2.

Table 3=1. Major Computer Equipment

Bldg.| Computer lMemory Magnetic Line Card | Card Data
Loc. | Facility | Size | Tape Units}| Printer|Reader | Punch| Disk Channel|{ DDC
14 [A-7004 | 65K | 1h-T29-IV T16-I |7223-1 1301-IT 3 Yes
14 | B-TO9% 65K | L4-729-IV | T716-1 |7223-I 1301-I1 3 Yes
. 3 | C-TO94-II| 65K |1k=-729-IV | T16-I |7223-I| 721-I|1301-II 3 Yes
1 | E-TO94-II| 32K |[12-729-IV | T716-I | T1i-I| 721-I 2 No

L-729-vI

3 | F=TO94 32K | 12-729-1IV 716=-I | Tll-I 2 No
14 | 1107G* 65K |2k 1 1 1 2 Drums 3 No
14 | 1107H* 65K |16 1 1 1 2 Drums 3 No

*Paper tape reader/punch

25 February 1966

3=k

Table 3-2. Peripheral Equipment
Bldg. Computer Memory Magnetic Card Line
Loc. Facility Size Tape Units Read/Punch Printer
14 A-IBM-1401 1.4K 1-7330 1403-1I1
1L D-IBM-1401 LK 2-7330 1012-I* 1403-I1
1402-1
14 E-IBM-1401 LK 2-T29-IT 1402-I 1403-II
14 F-IBM-1401 8K 2-T29-11 1402-1 1403-II
1 IBM~-1460 8K LaT29-VI%** 1402-I 1403-I1I
2=T29=IV¥¥*
14 I-IBM=-TO10%* 100K 8-T29-1IV 1402-1 1403-IT1I
14 IBM=1401 8K hT29-1V 1402-1 1403-II

* Paper tape reader/punch
*% 1301 disk
*%% Switchable units

25 February 1966 " 3-5

3.1.3

3.1.4

3.2

3.2.1

3.2.1.1

SYSTEM TAPE MAINTENANCE

The Advanced Orbital Programming Branch (AOPB) of the Data Systems
Division has primary responsibility for maintaining the CAMEO system
tape. Tape revisions or updating occur periodically as a consequence
of one or more of the following conditions:

(1) A requirement to translate valusble additions to GSFC hardware
into software features.

(2) spin-off from a continuing research and development effort
in computer programming.

ERROR REPORTING

The Advanced Orbital Programming Branch (AOPB) of the Data Systems
Division has the responsibility of maintaining the CAMEO system.

Any question regarding system utilization and system discrepancies
should be directed to AOPB personnel. The current method of report-
ing system discrepancies is verbal.

DETAILED PROCEDURES

This section includes several illustrations showing computer set-up
for a number of typical runs; presents a description of the control
commands and their use; and offers means by which to use CAMEQ effec-
tively.

CAMEO CONTROL COMMANDS

This paragraph presents in detail a description of the control commands
recognized by CAMEO. The user controls and directs the processing of
his job through the operator by requesting settings of console switches
thereby directing CAMEO to perform any one of several functions.

Encoding Control

(1) Initial Input Mode Switch: Setting this switch causes CAMEO to
begin encoding by reading from the card reader. This switch is

Sense Switch #1 on the TO94 and Jump Switch #15 on the 1107. The input
mode is controlled internally by the dot (.) command after encoding
starts.

(2) Program Save Switch: Setting this switch causes the encoded
program to be recorded on a self-loading magnetic tape for later
reloading. This switch is Sense Switch #2 on the TO9% and Jump
Switch #14 on the 1107.

25 February 1966 3-6

3.2.1.2

3.2.2

3.2.2.1

(3) Unit Program Switch: Setting this switch causes the tape unit
containing the source program to rewind following CAMEQO encoding
since it is not part of a batch run. This switch is Sense Switch
#3 on the TO94 and Jump Switch #13 on the 1107.

(4) Error Bypass Switch: Setting this switch causes the CAMEO en-
coder to bypass any source program errors detected by simply deleting
the erroneous commands and continuing instead of halting for operator
correction. This switch is Sense Switch #4 on the 7094 and Jump Switch
#12 on the 1107.

(5) cCumulative Encoding Switch: Setting this switch causes CAMEO
when loaded to leave core memory undisturbed and to encode the coming
program in with the contents of core as found. This switch is Sense
Switch #5 on the TO94 and Jump Switch #ll on the 1107.

Execution Control

Interrupt-unload Switch: Setting this switch causes the running pro-
gram to be interrupted at the next flow connector execution and to

be recorded on a self-loading magnetic tape for later restart. This
switch is Sense Switch #2 on the TO94 and Jump Switch #l4 on the 110T.
(See 3.2.1.1(2)).

CAMEO CONSOLE SETTINGS

CAMEO processes a job not under the control of a control deck but
rather under the control of switches set at the computer console by
a person responsible for successful completion of the job. There
follow some examples of typical machine set-ups and console settings
to illustrate the various operations performed under CAMEO.

Encode and Execute

Machine Set-up

CAMEO Element 7094 unit 1107 unit

Encoder ready on tape Al on Tape 2-0

Source deck ready at Card Reader at Card Reader (12-0)
Source tape ready on Tape A2 on Tape 2-1

Console Switch Settings

CAMEO Switch TO94 Switch 1107 Switch

Initial Input Mode Sense Switch 1 Jump Switch 15
Unit Program Sense Switch 3 Jump Switch 13

25 February 1966 3-7

3.2.2.2

3.2.2.3

3.2'2.“

Operator Action

CAMEO Action TO94 Action 1107 Action
Start Press Load Tape Bootstrap from 2-0

Encoding will begin with source cards. A dot (.) card in the deck will
cause encoding to continue from that point with the tape. On the tape,
a dot (.) record may be used to cause to return to encoding from the
card reader.

Encode and Save on Self-Iloading Tape

Machine Set-up

CAMEO element 7094 unit 1107 unit

Encoder ready on Tape Al on Tape 4-0

Source deck ready at Card Reader at Card Reader (12-0)
Source tape ready on Tape A2 on Tape 4-1

Save tape ready on Tape A3 on Tape L4-2

The Operator Action is the same as in 3.2.2.1

Console Switch Settings

CAMEQ Switch 7094 Switch 1107 Switch

Initial Input Mode Sense Switch 1 Jump Switch 15
Unit Program Sense Switch 3 Jump Switch 13
Program save Sense Switch 2 Jump Switch 14

When encoding is complete the encoded program is written on a self-
loading tape for later use.

Load and Execute

Machine Set-up

CAMEO Element 7094 unit 1107 unit
Program ready on Tape Al on Tape 4-0

No switches are set at the console and the Operator Action required
is the same as in 3.2.2.1.

Postmortem Decimal Dump

Machine Set-up

CAMEO Element 7094 unit 1107 unit
Encoder ready on Tape Al on Tape 4-0
Dump ready on Tape A2 on Tape L4-1

25 February 1966 3-8

CAMEO Switch 7094 Switch 1107 Switch
Unit Program Switch Sense Switch 3 Jump Switch 13
Cummulative Encoding Switch Sense Switch 5 Jump Switch 11

The Operator Action required is the same as in 3.2.2.1.

25 February 1966 3-9

3.3

3.3.1

3.3.2

3.3.3

3.3.k4

CAMEO BIBLIOGRAPHY

This section provides a list with abstracts of documents on CAMEO.

Programming in MYSTIC: A Primer on the Use of CAMEO

X-5E2~6h-3g§--Goddard Space Flight Center

The aim of this document is to guide the beginner in learning the
use of CAMEO. It provides a comprehensive description of the MYSTIC

command repertoire and presents to the reader a set of representative
exercises.

CAMEQO System Description
X-542-64-148--Goddard Space Flight Center

This document presents a system description of CAMEO and of the
MYSTIC language that is the input to the CAMEOQ system. It develops
the preparation of a problem for solution by presenting a typical
problem. There is also included a brief description of the system's
performance since its inception in mid-1955. As an introduction,
this document offers a simplified analysis of the complete program
production process as it is accomplished by a composite system made
up of men and a machine.

CAMEO: Univac 1107 Usage

X-542-64-248--Goddard Space Flight Center

This document is concerned with the information necessary for the
operation of CAMEO on the Univac 1107. It describes tape, card,

and console set-ups; how halts are handled; and shows the typewriter
messages generated at the time of normal stops or error halts. A
complete listing of the Sleuth II program which does the encoding
and a flow diagram of that program are attached to provide answers
to any questions that may arise about error recovery, I/O operations
and floating point adjustments. It is not necessary to be familiar
with the Univac 1107 to use this system, but the listing and diagram
are provided for those who are interested in the details of the en-
coding system.

CAMEO: IBM 7094 Usage
X-542-6L-363--Goddard Space Flight Center

This document covers the necessary steps in operation of the CAMEQ
system on the IBM TO94. It describes the input to the CAMEO encoder,
tape assignments, console operations, sense switch settings, output,
and CAMEO halts, as well as supplementary operations which are used
to control encoding in the TO94 CAMEO. It supplies information con-
cerning the duplicating of the machine language program tape and
generating of the CAMEO tape. The TO94 flow diagram and the CAMEO
FAP listing are included for completeness.

25 February 1966 3-10

3.3.5

3.3.6

3.3.7

MYSTIC Dictionary Routine
X-542-65-17--Goddard Space Flight Center

This document describes how the MYSTIC Dictionary Routine is used to
provide rapid communication between programming systems by permitting
the translation of MYSTIC programs to computers for which no CAMEO
compiler exists. There are reproductions of the MYSTIC Memory Meps
of the Executive Routine and the subroutines written for us by this
program; flow dlagrams of the program; and a listing of the source
program.

R15 CAMEO Quick Diagnostic Function Program Description: AOPB
Systems Manual
X-542-65-119--Goddard Space Flight Center

This document describes how the CAMEO quick diagnostic function is
used to analyze a MYSTIC program to provide an index of instruction
line numbers versus input program addresses. The index will dis-
tinguish those instructions which alter the contents of an address
from those which use the contents of an address. Also, for each
address it provides a list of all Op Codes operating on it.

R143 Tape Modification Routine Program Description: AOPB Systems
Manual
X-5042-65-215--Goddard Space Flight Center

This document describes how the utility program R143 is used for
modifying (or updating) MYSTIC and other BCD tapes. It may be used
to delete or insert records or files, and provides a fast and easy-
to-use means of program maintenance, thereby reducing the need to
retain, manually update, and reconvert card decks. The document
further contains a listing of a sample modify deck and the on-line
output produced during the run, along with a description of the on-
line output.

25 February 1966 ©3-11

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.1.3

3.4.2

3.4.2.1

3.4k.2.2

PROGRAMMING SUPPORT PACKAGES

This section collects descriptions of the use of many of the pre-
programmed packages available to programmers of the Advanced Orbital
Programming Branch.

UTILITY PACKAGE

This package is used by the CAMEO programmer to checkout MYSTIC
programs.

Print-Qut Memory (FOOL)

This subroutine prints on line or writes on tape the contents of
operand memory in floating point decimal five locations per line.

Interval Core Dump (F062)

This subroutine is used to dump intervals of core memory between
specified core locations at specified points during a program run.
Core intervals are dumped prior to the execution of a specified
Begin Command.

Change of Code (F177)

This subroutine is used to make temporary changes in a MYSTIC
program at execution time in MYSTIC but without re-encoding.

ARITHMETIC PACKAGES
These packages are used by the CAMEO programmer to simplify his
work by employing the notation of the problem in the programming

of scientific problems.

Vector Arithmetic Package

This package allows vector operations to be performed on the
contents of three consecutive addresses in the manner of a two
address machine. Operations permitted are: move, take magnitude,
take direction (unitize), add, subtract, dot product, cross product,
scalar multiply.

Matrix Arithmetic Package

This package allows matrix operations to be per® rmed on the con-
tents of specified addresses in the manner of a two address machine.
Operations permitted are: multiply, invert, transpose.

25 February 1966 3-12

3.k.2.3

3.4h.2.4

3.k.2.5

3.4.3

3.4.3.1

3.Lk.3.2

3.4.3.3

Fourier Series Arithmetic Package

This package allows Fourier series operations to be performed on
the contents of specified addresses in the manner of a two-address
machine. Operations permitted are: move add, subtract, multiply,
term extract, differentiate, scalar multiply, integrate.

Power Series Arithmetic Package

This package allows power series operations to be performed on the
contents of specified addresses in the manner of a two-address
machine. Operations permitted are: move, add, subtract, multiply.

High-speed Elementary Functions Package

This package provides the high-speed computation of elementary
functions by way of optimized machine language programs to compute:
reduced angle, arc sine/arc cosine, arc tangent, exponential,
natural logarithm, sine/cosine, square root.

SPECIAL PURPOSE PACKAGES
These packages are designed to make available to the CAMEO pro-
grammer some of the special-purpose modifications of GSFC equipment

for use on specific problems which would benefit from them.

Real-Time Adapter IBM 7094

This program allows use of Mystic routines in the real-time mode.
This adapter was used to support a real-time fly-by of a SYNCOM
satellite over Wallops Island. The one adepter introduces the
entire CAMEO system to real-time applications.

FACIL (Fortran Assembly Compatible Interface Linkage)

This subroutine provides linkage between programs coded in Fortran IV
and subroutines initially coded in Mystic and converted in IBMAP.

MYSTIC DICTIONARY ROUTINE (See GSFC Document, X-542-65-17)

This program is used to provide repid communication between pro-
gramming systems and expedite the translation of Mystic programs

to computers for which no CAMEO compiler exists. Since Mystic
commands are very similar to Macros, they can be defined prior to
any processing. A change in the definition of the Mystic commands
produces a new set of operations and thus allows a variety of output

25 February 1966 3=-13

3.4.3.4

3.k.4

3.4.4.1

3.4.4,2

3.h.4.3

languages. The Mystic program to be converted must be on tape in
BCD. The Memory Map and dictionary are on cards. There are two
options in this program that allow the user to choose between naming
symbolic references in the program or allowing the routine to compute
the references.

Drum Storage Adapter (1107)

This program allows the Mystic programmer to use the 1107 magnetic
drum storage and an indirectly addressed large-scale memory.

PERIPHERAL EQUIPMENT UTILITY ROUTINES

These routines are used to facilitate program development, system
development, and program and system documentation.

Table of Contents

Using a set of control cards and the AOPB Functions Tapes as input
to the IBM 1401, this routine produces a Table of Contents of the
AOPB Function Tapes. This Table of Contents includes each routine
name, description, and where it may be found (i.e., volume number
and page number) in the AOPB Functions List. The Table of Contents
is keyed to the Mystic 1list.

Tape Modifications Program

This IBM 1401 program is used to modify BCD tapes (usually BCD pro-
gram tapes). ‘The input consists of the tape to be modified and a
card deck containing control cards and any desired modifications.
The output is the modified tape and a listing of the modified tape,
preceded by a table indicating each modification. The listing of
the modified tape may be either an unedited, single-spaced listing,
or an edited Mystic Listing (see 3.4.4.3).

Mystic List

This routine is used to produce edited listings of CAMEO routines
and programs. The listings are used to facilitate program develop-
ment and for program documentation. The IBM 1401 version accepts

es input either cards or tape and produces, at the end of the list-
ing, an index of subroutines by page number and an index of sub-
routines by K-card. The Univac 1004 version accepts only card input
and does not produce the subroutine indices.

25 February 1966 3-14

3.5

3.5.1

3.5.2

3.5.3

3.5.4

ENCODER TAPES

This section describes in brief the characterization of the several
encoders that are embedded in the CAMEO system. These Mystic
compilers operate under the same principle and are available on the
Univac 1107 and the IBM 7094 32K and 65K.

ENCODER FOR UNIVAC 1107

The Mystic encoder written in the 1107 SLEUTH II assembly language
is available for encoding on Mystic programs to be run on the 1107
computer. The programmer should indicate that his progrem is to
be run on the 1107 when submitting his job request card.

ENCODER FOR IBM 709% (32K)

The Mystic encoder written in the FORTRAN ASSEMBLY PROGRAM (FAP)
language is available for encoding Mystic programs to be run on
the 7094 32K computer. The programmer should indicate that his
program is to be run on the 7094 32K when filling out his job
request card.

ENCODER FOR IBM 7094 (65K)

The Mystic encoder written in the FORTRAN ASSEMBLY PROGRAM (FAP)
language is aveilable for encoding Mystic programs to be run on
the 7094 65K computer. The programmer should indicate that his
program is to be run on the 7094 65K when submitting his job
request card.

ENCODER FOR IBM 7094 (DOUBLE PRECISION)

A Mystic encoder written in the FORTRAN ASSEMBLY PROGRAM (FAP)
language is available for encoding 16 digit Mystic programs to

be run in double precision on the 7094. Double-precision is a
technique for carrying out floating-point calculations with twice
the normal number of significant places. Programmers desiring
double-precision should so indicate by specifying the TO94 double-
precision encoder on the job request card.

25 February 1966 3-15

3‘6
3.6.1

3.6.2

3.7
3.7.1

3.7.2

3.7.3

3.7.b

FUNCTIONAL AIDS AND CODING SHEETS

MYSTIC STORAGE MAP

The Mystic Storage Map (see Figure 3-2) is designed to aid in alloca-
tion of storage. Each page of a map can be used to specify the con-
tents of a block of one hundred locations.

CAMEO CODING SHEETS

The CAMEO Coding Sheets (see Figure 3-3) are so designed that the
formats of the various instructions are apparent. This coding paper
facilitates both the writing and the keypunching of programs.

JOB PROCEDURE
DEFINITION

1) Define the problem, limits of variables, input, desired output.
2) Analyze the proposed technique of solution.
3) Organize and flow chart the steps necessary for solution.

DEVELOPMENT

1) Acquire necessary standard functions from AOPB functions library.
If program is long, put these functions on tape.

2) Acquire Print-Out Memory, Interval Core Dump, One Word Load sube
routines and include them in the program.

3) Write routines specific to the problem using CAMEO Coding Forms
and CAMEO Memory Maps.

L) Obtain Mystic Listing of the program and use this to check the
program.

TESTING

1) Make any necessary or desirable changes in the program.

2) Obtain Mystic Listing of the program for checking.

3) Test the progranm.

L) Check results. If results are correct, proceed to step 5). If
results are not correct, consider use of Interval Core Dump for
analysis of errors and proceed to step 1).

5) Make and check self-loading binary systems tape.

DOCUMENTATION

1) Review and, where necessary, modify documentation developed in
Paragraphs 3.7.1 and 3.T7.2.
2) Include the following:

a. Mystic list of the program
b. Memory Map of the program
c. Sample input

d. Sample output

e. Flow chart

25 February 1966

3-16

MYSTIC STORAGE MAP

MYSTiC PROGRAM NO. PAGE OF
DESCRIPTION:
PROGRAMMER :
00 [X} [X] X} 04
. 00
os os 07 (Y] o
. 05
10 1t 12 13 14
10
} [} 1 17 Ve e
15
20 ER 22 23 24
20
28 26 27 20 29
I25
30 3t 32 X} 3¢
: 30
38 3 37 e 3t
2 35
a0 al a2 'Y} as
.40
as .6 a7 4 ar
45
30 (3} 82 53 sa
. 50
ss se 87 s se
, 55
s0 st [} [} Y]
60
.3 Y] (%} . .
L85
70 71 72 79 74
+ 20
78 X 77 78 e
. 75
(X LA [¥] [} (¥}
, 80
[[[} (1] (1]
, 85
s0 L] (X} [} LX)
180
[X) (X} " (1] 1]
295

NOTES :

Figure 3-2.

Mystic Storage Map

3-17

25 February 1966

3459 HONVIE ONIWNVHO0Ud TV1IGH0 Q3INVAQY

{v9/8) 65-0¥S

-
- -
4
4

—r—r—r—
Ty

T T —
T

LARELANS bt e T

T —r T

T T
T T

—— L e

L e e e L e

- =
4

S
T v
T

s
— —

4
4

SRS Aum s mem s |
L S e e aa
T

SANVWNOD 03NYD

13 9 1

o€

s

0z

st

ol

4

ANIWNOD 40d XNVI8 3AVIT]

aboy

“doyiny

:._o:ou_t.:ov_l—

ONIGOD 03IWYD

CAMEO Coding Sheet

Figure 3-3.

25 February 1966

3.8

3-18

AOPB FUNCTIONAL SUBROUTINES

The Advanced Orbital Programming Branch (AOPB) has a library of com~

monly used subroutines such as functions for generating the sine or

h
cosine of an angle, determining the square root or nt root of a num-

ber, etc. These routines are written in MYSTIC and are as foilows:

AOPB Number
and Date

Function Name

Function Objective and Remarks

¥FOOl--611015

F002--611015

F003--611015

FOOL-611015

Sine-Cosine

Arc-sine, Arc-Cosine,
Square Root

Square Root

Memory Print, Output
Scale

Computes sine at entrance K + 1.
Computes cosine at sine entrance
+4, Argument must be in radi-
ans. Requires 30 storage loca-
tions.

Computes angle in first or
fourth quadrant if entered with
sine. Computes arc sine at
entrance K + 1. Computes arc
sine entrance +10. Resulting
angle is in radisns in first or
fourth quadrant for arc sine and
in first or third quadrant for
arc cosine. Extracts square
root at arc sine entrance +4O.
Requires 60 storage locations.

Extracts square root. Requires
20 storage locations.

Prints on-line the contents of
memory in five locations per line
in floating point decimal. Nor-
mally located at KO9T2T output
converter, location KO9Tu48, it
takes floating-point number and
exponent from one location and
places base in specified loca-
tion followed by exponent in
subsequent location. Requires
150 storage locations.

25 February 1966

3-19

F009--611015

F010--611015

F011--611015

FO12--611102

Theory Orbit Gen-
erator (H ST)

Gill Method Integra-
tion Orbit Genersat or
(McoI)

Arc-Tangent X

Arc-Tangent

Vector Package

AOPB Number
and Date Function Name Function Objective and Remarks
FO05--611015 |N°® Root Extracts n'® root of number.
Argument 1s followed by N in
subsequent location. Requires
40 storage locations.
F006--611015 | Position in Ellipse NOTE: Routines FO006
Orbit Generator (PE) through FOO9
are available
FOOT--611015 | Brouwer Satellite from AOPB.
Theory Orbit Gen-
erator (Brouwer)
FO08--611015 |Hansen Satellite

Computes arc tangent or argu-
ment. Resulting angle is in
radians in first or fourth
quadrant. Requires 25 storage
locations.

Computes arc tangent with proper
quadrant allocation. Arguments
are sine and cosine in consecu-
tive locations. Resulting angle
is in radians. Requires 30
storage spaces.

For vector relocation enter K
+ 1. Compute vector magnitude
at package entrance +10. Com-
puter vector direction at re-
location entrance +20. Vector
subtraction at relocation en-
trance +40. Dot product &t re-
location entrance +50. Cross
product at relocation entrance
+60. Scalar by product reloca-
tion at +75. Argument for this
product is scalar. Arguments

25 February 1966

3-20

AOPB Numbher

and Date Function Name Function Objective and Remarks
F012--611102 |Vector Package for all others call for vector
(Cont'a) (Cont'd) in these successive locations.
Entire package requires storage
locations.
F013--611102 |Quadrant Determina- Computes angle with proper quad-

FO1k--611102

F015--611102

FO16--611102

FO17--611102

F018--611102

F019--611102

tion

Matrix Multiplication

Integer Converter

Natural Log

Exponential

Degrees, Minutes,
Seconds to Radians

Alphabetic Sign,
Degrees, Minutes,
Seconds to Radians

rant allocation. Arguments are
sine and cosine in successive
locations. Resulting angle is
in radians. Requires 25 storage
locations.

Multiplies first matrix by
second. Arguments are in conse-
cutive locations. Elements of
product matrix are stored in
same manner. Requires 35 stor-
age locations.

Converts floating-point number
to integer and fractional parts
in consecutive locations. Re-
quires 20 storage locations.

Computes the natural logarithm
of the absolute value of P. Re-
quires 40 storage locations.

Computes E to the X for value of
X. Requires 30 storage loca-
tions.

Converts degrees, minutes, and
seconds to radilans. Arguments
must be positive in three con-
secutive locations. Requires
15 storage locations.

Converts alpha sign, degrees,
minutes, seconds, fractions of
seconds to radians. Will con-
vert positive or negative de-
grees. Argument must bhe in
three consecutive locations,
that is, first location a sign

25 February 1966

3-el

AOPB Number
and Date

Function Name

Function Objective and Remarks

F019--611102
(Cont'a)

F020--611102

FO22--611102

F023--611102

FO2L--611102

FOR1--611102

Alphabetic Sign,

Degrees, Minutes,

Seconds to Radians
(Cont'a)

Hours, Minutes,

Seconds to Radians

Hours, Minutes,
Seconds to Seconds

Day Count

Date

Observation Day

sign and the second in degrees;
third in minutes, and seconds,
and fractions of seconds (capa-
ble of handling three decimals).
Requires 25 storage locations.

Converts hours, minutes, seconds
to radians. Argument in three
consecutive locations. Requires
15 storage locations.

Converts hour, minutes, seconds
to seconds. Argument in three
consecutive locations. Requires
10 storage locations.

Converts year, month, and day to
number of days from Jan. 1 of
given year through given date.
Arguments in three consecutive
locations. Requires 35 storage
locations.

Converts year and day count
(number of days from Jan. 1 of
given year through given date)
to year, month, and day. Argu-
ments are in two consecutive
locations. Requires 50 storage
locations.

Converts year of reference, day
count (number of days from Jan.
1 of given year through day of
reference), observation year,
month, day to number of days
from reference date through ob-
servation date. Arguments must
be in five consecutive loca-
tions. Requires 20 storage lo-
cations.

25 February 1966

3-22

AOPB Number
and Date

Function Name

Function Objective and Remarks

F025-611102

F026--611102

FO27--611102

F028-611102

F029-611102

F030--611102

Julian Days--
Seconds to Vanguard
Units of Time

Julian Days--

Seconds to Julian
Days, Hours, Minutes,
Seconds

Azimuth Elevation
to L, M, N

Hours Angle and
Declination to
L, M, N

Right Ascension,
Declination to
L, M, N

Header Load

Converts Julian days and seconds
to Vanguard units of time. Ar-
guments must be in two successive
locations. Vanguard units of
time are based on 1 VUT = 806.832
seconds. Requires 15 storage
locations.

Converts Julian days and seconds
to Julian days, hours, minutes,
and seconds. Arguments are in
three successive locations; the

"third location contains the

rounding factor.
storage locations.

Requires 20

Converts azimith and elevation to
direction cosines L, M, and H.
Argument in radians are in suc-
cessive locations. Requires 15
storage locations.

Converts hour angle, declination
and Phi to direction cosines L,
M, H. Arguments in Radians are
in three successive locations.
Requires 25 storage locations.

Converts universal time, right
ascension, declination, right
ascension mean sun, stations
longitude, and station latitude
to direction cosines L, M, N.
Arguments in radians in six con-
secutive locations. Requires 25
storage locations.

Loads header data from card of
argument equals zero, or from
tape argument not equal to zero
into 1L specified locations.
Requires storage locations.

25 February 1966

3-23

AOPB Number
and Date

Function Name

Function Objective and Remarks

F031--611102

F032--611102

F033--611102

FO34--611102

F035--611102

Satellite Identifi-
cation Load

Satellite Identifi-
cation Load and
Print

Run Identification
Load and Print

Station Data Load

Station Data
Search

Loads satellite identification
data from card if argument
equals zero and from tape if ar-
gument does not equal to zero
into nine consecutive storage
locations. Requires 30 storage
locations.

Loads and prints on-line satel-
lite identification data. If
initial argument equals zero, it
loads a card; if argument does
not equal to zero, it loads from
tape. If second argument is not
equal to zero, it punches a
card; ifequal to zero, no card
is output. If fourth argument
is not equal to zero, it writes
on tape Bl; if equal to zero, no
tape is output. Data is always
printed on~line. Requires 25
storage locations.

Loads run identification data
into specified locations and
prints on-line run identification
information. Requires T5

storage locations.

Loads station data into speci-
fied locations (allow six loca-
tions for each station data
item). Requires 40 storage
locations.

Searches table for given station
name and extracts data. Argu~
ment 7 equals initial location
of table. First two output lo-
cations contain station names
(must be supplied); allow four
additional consecutive locations
for extracted data. If station
name being searched for is not in
table, zeroes will he placed in
four locations. Requires 20

storage locations.

25 February 1966

3-2k

AQOPB Number
and Date

Function Name

Function Objective and Remarks

F036--611102

FO37--611102

FO38--611102

F039--611102

JTonosphere
Datae Load

JTonosphere
Data Search

Optical Station
Number and Corres-
ponding Code Load

Optical Data
Load

Loads ionosphere data into
specified locations (allow 15
locations for each item). If
argument equals zero, it loads
cards. If argument does not
equal to zero, it reads from
tape. A blank card or record
signals end of data. One word
of 99999999 is stored to signal
end of table. Requires L5
storage locations.

Searches table for station num-
ber and extracts data. Argu-
ment Z indicates initial loca-
tion of table. First output
location contains station number
(must be supplied). Allow 20
additional consecutive locations
for extracted information. Re-
quires 30 storage locations.

Loads Optical station numbers
and corresponding codes (names)
into table. If argument equals
zero, load cards. If argument
does not equal to zero, read
from tape. Blanks indicate end
data and zeroes are stored in
table. Requires 50 storage
locations.

Loads optical data into table.
If argument equals zero, loads
cards; and if argument does not
equal to zero, it reads from
tape. Blank indicates end of
data and zeroes are placed at
end of table. Requires 55 stor-
age locations.

25 February 1966

3-25

AOPB Number
and Date

Functlion Name

Function Objective and Remarks

FOLO--611102

FOU1--611102

FOU2--611102

FOl3--611102

FOLL--611102

FOU5--611102

FO4T--611102

FO48--611102

Refined Optical
Data Load

Right Ascension
Mean Sun Data

Right Ascension Mean
Sun Data Search

Weight = (F, A,
B, SD, SD¥)

Heun Method
Integration

Angle Compati-
bility Package

Angle Reducer

Angle Reducer

Loads refined optical data into
table. If argument equals zero,
it loads cards. If argument
does not equal zero, it reads
from tape. Blank indicates end
of data and zeroes are placed
at end of table. Requires 55
storage locations.

Loads table with right angle
mean sun date. If argument is
zero, it loads cards; and if ar-
gument is not zero, it reads
from tape. Blank indicates end
of data and zeroes are vplaced at
end of table. Requires 4O stor-
age locations.

Searches table for desired right
angle mean sun. Argument Z
equals initial location of table,
and first three locations of out-
put, year, month, day of desired
R.A.M.S. rams will be in radians.
If search 1s successful, it
places word 99999999 in output
location. Requires 20 storage
locations.

NOTE: Routines FO43
and FOLk are
available from
AQOPB.

Consists of angle relocation,
subtraction and reducer, as
well as scalar multiplication.

Places angle between O and 2 PI.

Places angle between - 2 PI and
+ 2 PI.

25 February 1966

3-26

AOPB Number

and Date Function Name Function Objective and Remarks

FO49-~611102 |Range Rate NOTE: Routines FOL9
through FO052

F050--611102 | Absolute Value are available
from AOPB.

F051--611102 | Drag Data

F052--611102 | Observation Load

F053--611102 | Ionosphere Refraction

FO54--620308 | Matrix Inversion Performs matrix inversion.

F055--620308

FO56

FO5T7-=-620T24
FO58--620T724

F059--611015

FO60--630215

FO61--630215

Word Load

Numerical Integration
Position Partisl
Derivatives

Kepler (Revised)
Geodetic ILatitude
and Helght to Geo-
centric Latitude
and Radius Vector

Input Converter

Output Constants
for D.C.

Output Constants
for S.D.

Argument consists of number of
rows in matrix to be inverted,
number of columns, and elements
of matrix by rows (in consecu-
tive locations). Inverse is
stored by rows in locations
occupied by original matrix.
Requires storage locations.

Substitutes new value for value
currently in storage location.
Onecard for each value to bhe

superseded. Blank card indi-
cates end.
NOTE: Routines FO056

through FO61
are available
from AOFB.

25 February 1966

AOPE Number
and Date

Function Name

Function Objective and Remarks

F062-~630315

F063--630315

FO64--601015

FO65--601015

FO66--601015
FO6T--601015

F068--621015

F069--611015

FOTO0--600615

FOT1--630703

FOT2--611015

FOT73--610130

FOTL--611015

Interval Core Dump

Interval Core Dump
Print

Square Root
Matrix Solution

Fitting Function
Partial

Matrix Normalizer
Matrix Clear

Sub-Satellite
Point and Height

Round and Scale

Lunear Equations
Solutions

BCD Output Plot

Sunlight Determina-
tion

Element Load
(Conversion of -
Elements)

GSFC Elements Print

NOTE :

Routines FO6?
through FOT#
are availlable
from AOPB.

. 29 April 1966

Paragraph
h.1

L.2

CONTENTS

CHAPTER 4 EXEC II PROCESSOR--1107

EXEC IT PROCESSOR--1107 SYSTEM DESCRIPTION. . . .

b.o,2

SYSTEM STRUCTURE
EXEC II 1107-1108 CONFIGURATION DIFFERENCES.
MACHINE CONFIGURATION. . & & ©v & & v o 4 . .
SYSTEM TAPE MAINTENANCE. + + o v o & o & & .
ERROR REPORTING. « « & & & o o « « o o « o .

PR OCED[]RES . e . ¢ e . . . *» e o . . . @

CONTROL CARDS FORMAT AND USAGE
h,o.1.1 System Control Card Description .

L.2.1.2 Card Control Control-Card Description
h.2.1.3 Processor Call Control-Card
Description.
h.2.1.4 Allocator Control Control-Card
Description. + . . . 4 . .
k.2.1.5 Progremming Procedures. . . . o . . .
PROGRAMMING AIDS v 4 4 o 4 « ¢ o o o o o o o o .

Debugging « o ¢ o o ¢ o o v o o .
1107 Item Advance Routines., . . .
1107 Analyzer o v v v v o o & o &
1107 Editing Routine.
Save and Restore Routine.
Date Generator Routine.
Diagnostic Trace (SNOOPY)
Label Check Routine . . «
Trigonometric Functions

.
.
*

e g e
DR DR R
MR R R
O O o o R R

FE
=
o

Frees
~N AW

[]
= E=\0 0 ¢]
ONO

FoFEEs oF

J]
[ull}
Qo

FEE
NIV
ww +~

Lok
L-26
h.o7
Lot
o7
428
L.28
428
428

29 April 1966 h_oii

CONTENTS (Cont'd)

Paragraph Page
4.2.2.10 Trace Routines. . . « o o « « « « « » « 4=29
42,211 SETEOF. + « ¢ « o o o o o o « « o s+ o o 4b=29
L.2.2,12 S-C 4020 Package. o« « + o « o« o o o + o 4=29
4.2,2,13 MOVER « + + o ¢ o ¢ o o o o o o o o o o k=29
L2215 TACE. &« v ¢ v ¢ v v ¢ o ¢ o o « o« o o 4=30
B.2,2.15 JFACTO:. o ¢ o « « ¢ o o « o o « o « « » 4=30
4.2.2.16 Tape Transfer Subroutine. . . . « . . . 4=30
bi2217T TUTIL @ v v v v v v v 0 o o o o o o o o k=32
L,2,2.18 PSWTCH. « « o« o o v o o o o o o o o o o 4231
L,2.2.19 CalCOMP + « v o « o « = « o ¢ o « o « o 4e31
4.2.2.20 Standard FORTRAN I/O Table for Univac

1107/1108 EXEC II System 4=32

4.3 OPERATING PROCEDURES. « « 4 « « o o o o« & o o o o o o o o » 43k

4.3.1 TAPE BOOTSTRAP ROUTINE « « « « « o ¢ o o o« o o o « 434
4.3.2 DRUM BOOTSTRAP ROUTINE &« + « ©« o o o . e v e o o b3k
4.3.3 BASIC SYSTEM KEY-INS (OPERATCR ACTIONS) e o o o s ba3h
4.3.3.1 Eand X Key-Ins + « « o « « o o o « o o 4=34
4.3.3.2 Dand TKey-INns . « « « ¢« « « « o « « » 4=35
4.3.3.3 WEKey=INne ¢« ¢« ¢« ¢« o« ¢« « o« o« o o« o« o o o h=35
4.3.3.4 S Key-In. e e e s o o « o k35
4.3.3.5 LF Key-In . T T
4.3.3.6 AXey-In. . « ¢« e o o o o k235
4.3.4 SYSTEM KEY-INS FOR INPUT/OUTPUT CONTROL., e+ o + o ko35
h.3.4.1 The Card Reader . v « o« & + o « « . 436
L.3.k.2 The Card Punch. « ha36
b.3.4.3 Magnetic Tape . . « « + v « . . e . o ba36
4.3.5 SYSTEM KEY-INS FOR SYMBIONT CONTROL. k=36

L.3.6 TYPEWRITER MESSAGES PRODUCED BY THE MONITOR. k.36

.4 BIBLIOGRAPHY. &+ &« « v 4 4 ¢ v v v v v v 4 o o o o o v o o o k=37

4.5 AUXILIARY TAPE CONTENTS & + v o o o o o v v o o o o o o o . bo3g
5.1 AUXILIARY LIBRARY DECK SET &« & & &+ o o o « o o o » L-39
5.2 FIIE 2 (Independent Executable Programs) L=hO
.5.2.1 CULL. © ¢ ¢ 4 v v v v v v s v o o oo« babo
5.2.2 FORTRAN II to FORTRAN IV~
Translator (LIFT). . . .
5.2.3 1107 FAP Translator
5.2k Linear Programming

B rem s |
. ko
O T I

29 April 1966

Paragragh

hoiid

CONTENTS (Cont'd)

.

.

.

e o o o

L

.

Univac 1107 Fieldat

e o o

Cod

e & e+ o

e

e o

Convention

e &

in IBM/BCD NO. 55+ « « « o o o o &

4.6 UTILITY ROUTINES. « « « & &« o &
4.6.1 1107 UTILITY PROGRAMS.
k.6.1.1 Tape Copy .
4h.6.1.2 Tape Print.
4.6.2 1401 UTILITY PROGRAMS.
l".6.2'l
4.6.2.2

1401 Program (No. 56) to Interpret

and Print 1107, . PR Tapes . . .«

L. ASSEMBLY AND EXECUTION FROM TAPE.

L.8 CODING SHEETS « o « o o o o o @

o
lz%;

FrREFFEEeses
 H\0 -1 W1 Fw
)

Table

ILLUSTRATIONS

Flow Diagram of 1107 SLEUTH II. . .

System Control Cards Summary.

Card Control Control-Card Summary .

Processor Call Control-Card Summary

Allocator Control Card Summary. . .

Sample Auxilisry Library Tape Setup

Sample
Sample
Sample
Sample

L-1
k-2

CULL . . .

e o o e o e 0 .

* & o e o

* 8 s +

FORTRAN II to FORTRAN IV--Translator

1107 FAP Translastor. . . .

.

Linear Programming . .« + s+ + & & o &
Assembly in SLEUTH II Programming Form. . .

TABLE

¢ & e e » o

e o o o o

* o * e

Me jor Computer Equipment . « & o ¢ ¢« ¢ 4 ¢ ¢ ¢ o o o &
Standard FORTRAN I/O Table for Univac 1107/1108 EXEC II

+ o & s

.

* & & s e o

e« o o 8 s & e & ¢ »

e s o e

29 April 1966 o1

L.1

CHAPTER 4

EXEC II PROCESSOR-~110T7

SYSTEM DESCRIPTION

This chapter describes the EXEC II System for the Univac 1107. The
EXEC IT System uses the SIEUTH II (§ymbolic Egnguagg for the Univac
1107 THin Film Computer) assembler and the FORTRAN compiler.

The Univac 1107 is the solid-state successor to the vacuum-tube 1105
and 1103 scientific systems. There is no Program compatibility be-
tween the 1107 and its predecessors. However, programs written for
the 1107 computer can be used interchangeably with its successor,

the 1108 computer. See Paragraph 4.1.2 for configuration differences.

Although straightforward rrogramming of the Univac 1107 is not unusu-
ally complex, it does take a seasoned programmer to be able to take
full advantage of the powerful optional elements offered in most
instructions.

The EXEC II System is an operating system designed to monitor the
compilation and execution of programs, maximize utilization of avail-
able hardware, and minimize operator intervention. The system utilizes
an FH-880 Magnetic Drum as a high capacity buffer store to keep the
card readers, punches, and printers fully occupied and as a fast access
auxiliary store for program segments. An integrated set of diagnostic
aids and library maintenance facilities is included.

29 April 1966 42

)4‘.1‘1

SYSTEM STRUCTURE

The EXEC II System processes jobs by means of control cards. 1In the
simplest case, the input to the system ccnsists of a RUN control card,
a program deck, and source data cards. Various other control cards
are used to punctuate this input. In general, a single run can con-
struct programs from one or more source language processors (e.g.,
FORTRAN), previously compiled subprograms, and library retrievals;
execute these programs (with date input cards if required); and pro-
duce a diagnostic output for debugging purposes. An inverted capital
Greek delta V in column 1 of the card (which consists of a 7-8 punch)
identifies a control card. See Paragraph 4.2.1 for detailed speci-
fications as to the form and content of these control cards.

User programs in the 1107 Monitor System are controlled primarily by

means of a card deck. The primary control exercised by the operator

over the Monitor System is by means of unsolicited key-ins (keys on

the operator console). These key-ins are used to terminate the pro-

gram, to cause the system to continue after having been delayed, to

force a wait condition, etc. Symbionts, multiprogrammed routines,

receive all of their control through the operator's keyboard. ‘

The flow diasgram (Figure 4-1) illustrates the various functional com-
ponents of SLEUTH II and the paths of control between them. The first
loading of program instructions is accomplished by using the initial
load bootstrap routine (EXEC II Load Tape (COSM)). The first 224 ad-
dresses in core storage are reserved for this bootstrap routine which
serves to bring in the remainder of the resident and various other
parts of the system. The bootstrap routine also provides a simple
card load routine, a panic dump (simple dump routine), and a method
of patching the resident system prior to writing it to drum.

At each bootstrap from tape, a short routine is executed which makes
a simple check of the hardware.

Tape assignments within SLEUTH II are entirely at the option of the
programmer and, for production work, the selection of the tape unit
to be used for a particular reel is left to the discretion of the
operator. The assignment of multi-reel files is accomplished through
the use of an operational label.

29 April 1966 4.3

L.a.2

EXEC II 1107-1108 CONFIGURATION DIFFERENCES

Univac 1108 jobs are sent to the more available computer unless the
programmer states a particular machine is to be used. The 1108 EXEC
IT is quite similar to 1107 EXEC II, and most programs should run
under both systems with no change. There are, however, several dif-
ferences between EXEC II on the 1107 and 1108. These are discussed
below. If any others are detected, programmers should contact one
of the system programmers. The configuration of the 1108 is as
follows:

1) Channel 0--6 FH432 drums; Channel l--one FASTRAND II unit;
Channels 2, 3, and 12--VIIIC tape drives, 4 to a channel;
Channel 13--1004 card reader and printer; Channel 1lL--100L4
card reader, punch, and printer; Channel 15--console.

2) As on the 1107, character-count errors on tape input may be
ignored by use of the TACE$ routine. However, the last word
of such records is handled differently. On the 1107, the re-
mainder of the last word is filled with the number of charac-
ters read. On the 1108, the remainder of the word is zero
filled, and the character count is not available. For example,
if we are reading a record of 8 characters, the second word
of the buffer would appear as xx2222 on the 1107 and xx¢¢¢¢
on the 1108 (where xx are the last 2 characters of the record).

3) The mnemonic dump capability has had to be deleted, at least
temporarily. Any requests for mnemonic dumps will be honored
with octal dumps.

4) The resident of the 1108 EXEC II System takes up 12K, where-
as for the 1107 it takes up only 8K. Since the total availe
able core space on both machines is the same, this means that
some large programs may have to be Pared down to run on the

current 1108 EXEC II System. FXEC VIII will be a 12K system,
also.

5) On the VIIIC tape units, end-of-files will be read into the
first word of the input buffer. The end-of-file will appear
as an octal 17 in the leftmost six bits. The end-of-file will
be recognized as such, and control will be transferred to
whatever end-of-file routines are used by the programmer. The
remainder of the input buffer will not be destroyed.

6) The VIIIC tape drives have three densities: 200 (L),
556 (H), and 800 (X) bits per inch.

29 April 1966 Ll

7) The blank specifications field on the PMD card will not be
honored. The programs or areas of core desired to be dumped
must be stated explicitly. This modification will probably
be added to the 1107 at a later date.

8) Any parity error on a 1l- or 2-word tape record will be treated
as noise during a read and will be automatically disregarded.

9) The Trace Mode does not exist on the 1108, thus any routines
using the Trace Mode will not execute. Users of the TRACE
routine will be returned to their programs immediately upon
attempted execution of any of the TRACE entry points (TRC,
TRC$, etc.).

Anyone expecting to continue coding on the 1108 should remember, how-
ever, that the EXEC II is only a temporary expedient; and it will
eventually be replaced by EXEC VIII, which will be considerably
different.

-5

29 April 1966

II HINTIS LOTT JO wBIZeRq MOTd *T~f 9an3Td

quv *
v o oxa 10 NOT L3 oD
a
>4mwuwmz LINN ¥3d0dd
< Ol 3dv.L
43 TdNOD NDISSY
NV 1804 € osv
HIIENISSY Ho4 —
il H1IN3IS o 1
¥4I LINIHILINI
NOILVYD0T11V ¢ ayvo ¢ 18vis
ainosav sgv -108.LNOD .
B Nid c
dad
¥OSS3ID0Nd —s < M
NOILINI43a < 0 X
MOmn_m_ H0SS3I00¥d o w m w
NOILLINI4ZQ o
NOLLYDO1V X3 1dW0oD ans ¥OSSIO0Nd
40 NOILINIZ3a davi
NOILINI43a
ansz =40 w_o , NOILND3IX3 ¥43avay
an= asvo WV¥904d asvo
aN3 “IOMLINOD LX3N
1o3rgo T | 3LYNINN3L
$XXXIW ‘$udIN a
Yo ‘$LIXINW
Lix3a 11vo
¥OsSSIO0Nd
dnna

ONISSID0Md dANNA 4O aN3 NI LIOW 1SOd

29 April 1966

4h.1.3

MACHINE CONFIGURATION

46

The programmer using the Goddard Space Flight Center computer com-
plex has a vast quantity of data processing equipment at his disposal.
The EXEC II System operates on two of these large scale computers. A
list of this equipment is given in Table L-1.

Table 4-1. Major Computer Equipment
~ Magnetic No. of
Bldg.| Computer|Memory] Tape Line Data Card JCard
Loc. | Facility] Size Units | Printer Channel] Reader | Punch
14 11076 65K 2k 1 16 1 1
14 | 1108H*% |65K 12 2 16 2 1
(36-
bit
words
1 _1

1108 also has available a FASTRAND II random access mass storage
device.

‘ 29 April 1966 L7

Lolk

L.l.5

SYSTEM TAPE MAINTENANCE

The Programming Methods Section (PMS) of the Data Systems Division
has primary responsibility for maintaining the EXEC II System master
tape. Tape revisions or updating occur periodically as a result of
one or more of the following conditions: 1) new version or signifi-
cant corrections issued by Univac; 2) major changes originating from
GSFC programmers; and 3) catastrophic errors requiring the immediate
issuance of new tape.

In certain cases, when errors are of a minor consequence or unigue
to a particular application and immediate release of a new master
tape is not warranted, the PMS provides binary decks to circumvent
the error condition. With the release of new master tapes, the decks
are subsequently discarded by the programmer.

ERROR REPORTING

The PMS has the responsibility of maintaining the EXEC II System.
Any questions regarding system utilization and system discrepancies
should be directed to PMS personnel. The current method of report=
ing system discrepancies verbally is expeditious. However, it is
recommended that the Systems Discrepancy Report (see Form 1-1., Chap~
ter 1) be used for submittal to the PMS coordinator. In this way,

& current file of all discrepancies will be maintained along with the
corrective actions taken. A copy of the Discrepancy Form will be
available in the PMS coordinating office (Room 127, Building 3) and
in the dispatcher's office (Buildings 3 and 14). Programmers are re-
quired to periodically check the System Status Report (see Form 1-2.,
Chapter 1) to insure satisfactory operational performance from the
system used.

29 April 1966 L-8

L.2

DETAILED PROCEDURES

This section includes several illustrations showing job deck composi-
tion for a number of typical runs; presents a description of the con-
trol cards and their use; and offers means by which to use the system
effectively.

The Master Space Character, V, (which consists of a 7-8 punch) in
Column 1 of the card identifies a control card. (This should not be
confused with the blank space.) Options, if desired, are noted by

a string of letters and are punched beginning in Column 2 of the con-
trol card. A string of option letters is terminated by a blank Col-
umn. Column 2 must be blank if no options are specified. The control
card mnemonic appears next on the card. These mnemonics consist of
three letters, and they must be one of the set of 17 as described in
this paragraph. A string of one or more blanks must precede the mne-
monic. In some cases, the mnemonic may be followed by a comma and
then a single character. If this 1is so, a blank must follow that
character; otherwise, a blank must follow the mnemonic.

The remainder of the control card contains specifications for the sys-
tem routine involved. They are again preceded by a string of one or
more blanks. Since the specification portion varies considerably from
one control card to another, a general discussion is appropriate.
In summary, s control card has the form:
Voptions XXX, A specifications

where options represent the option letter string; xxx, the control
card mnemonic; A, a single character; and specifications, the speci-
fication portion.
The EOF or FIN control cards used by the card input system are inter-
preted at interrupt time, rendering the free form described above im-
practical. These two cards must be of the form:

Column 1 v

Column 2 blank

Column 3, L, 5 EOF or FIN

Column 6 blank

If a malformed control card is encountered, the card itself is printed,
followed by the message:

April 29, 1966 49

L.2.1

ABOVE CONTROL CARD IN ERROR~-~IGNORED

In the case of premature termination of a run, due to an error, any
control card other than a PMD (see Paragraph 4.2.1.1 (4)) will pro-
duce the meassage:

REMAINING CONTROL CARDS IGNORED

If the system is expecting a control card, but encounters one or more
cards not containing a V in Column 1, the following message is printed:

DATA CARDS ENCOUNTERED BY SYSTEM--IGNORED.
CONTROL CARDS FORMAT AND USAGE

This paragraph presents in detail the description of the control cards
that exercise control over the EXEC II System. The user controls and
directs the processsing of his job by inserting the proper control
cards in the job deck, thereby directing the operating system to per=-
form any one of several operations.

There are 19 control cards that fall into four categories, namely,
System Control, Processor Control, Allocator Control, and Card Input
Control. These control cards are detailed in Paragraphs 4.2.1.1
through 4.2.1.4,

29 April 1966 4-10

4L.2.1.1 System Control Card Description

The system control cards are summarized in Figure 4-2. A detailed
description of the control cards and their use is provided.

SEE
PAR. 4.2.1.1 MNEMONIC APPLICATION OPTIONS
(1) RUN To initiate each computer run. (priority)
(2) ASG To cause assignment of magnetic
tapes ACEFHKLCRX
(3) MSG To type message to operator HN
(&) PMD To cause memory printout after
execution ABCDEIQX
(5) ELT To introduce an element into the
program complex file from cards None
(6) HDG To give heading information for
printer output from the run NP
(1) TFR To specify which I/0 device--magnetic
drum or tape--is to be used to store
intermediate Fieldata images for the { S
printer symbiont.
(8) DPFR To route printer output to drum
storage. None

Figure L-2. System Control Cards Summary

29 April 1966 h-11

An individual description of the System Control Cards is as follows:

(1) RUN Control Card: (Variable Field Format)
1 80

v RUN identification, account, running time, print
output, print output channel, punch output channel

A RUN control card precedes each job to be performed. If the system
encounters a control card other than the expected run control card,
it prints the following message:

RUN CARD MISSING--DECK NOT ACCEPTED

NOTE: Priority which may appear on a run card should not be used by
the programmer. Priority will be assigned by the dispatcher.

The identification field should contain the installation's conventional
run identification. Both it and the account field may consist of up

to six characters taken from the set A ... 2, 1 ... 9, +, =, ., $
Blanks are illegal.

The running time field is an estimation of the running time in minutes
for the problem. Should this time be exceeded, the operator will be
informed and the run continued. It is the operator's responsibility
to terminate the run. The print output field is an estimation of the
print output in pages required for the problem. Should this estima-
tion be exceeded, the operator should be informed and the run com-
pleted. It is the operator's responsibility to terminate the run when
estimated running time or print out is exceeded. The running time
field may be omitted, in which case, the system assumes a maximm time
of five minutes; likewise, the output field may be omitted and a maxi-
mum of 50 pages will be assumed.

(2) ASG Control Card: (Variable Field Format)

1 80

v ASG assignment, assignment, ...

The ASG control card will associate a logical unit designation with
a scratch tape or with an operational label. The option filed may
contain the following letters (in any order):

A--accepts character count errors (1108 only)
H--density set high (556 bpi)

L--density set low (200 bpi)

X-~density set to 556 bpi (1107) or 800 bpi (1108)

29 April 1966 T

If no density setting is indicated, it will be assumed
to be high

O--parity set odd

E--parity set even

If no parity setting is indicated, it will be assumed
to be odd

R--rewind

C,K-~causes automatic Fieldata to BCD conversion on
output and BCD to Fieldata conversion on input (C is
software, K is hardware)

F--turns BCD conversion off

Any option letter appearing on an ASG control card will apply to all
assignments made on that card. An attempt to assign the same logical
designation more than once will produce a message on the printer, hut
will accept the last assignment made. No harm results from assigning
more than one logical designation to the same operational label. Any
number of ASG control cards may appear in a program; their effect is
cumulative.

It is sometimes desirable for the user to specify absolute tape as-
signments channel/unit (c/u). This feature eliminates the need for
the A key-in and "MOUNT" message but requires the operator to mount
the tapes where and when specified by the user. When absolute as-
signments are made, the ASG card takes the forms

v ASG c/u,c/u,... (Type I)
VOPTIONS ASG assignment (Type II)
YVOPTIONS ASG c¢/u,e/u,... assignment (Type III)

A card of Type I immediately followed by a card of Type II produces
the same results as a card of Type III. Only one "assignment' field
is allowed per card. A maximum of 10 cards of Type I collectively,
specifying a maximum of 10 channel/ﬁﬁit pairs, can be grouped to-
gether. Cards of Type I must immediately precede one card of Type
II. The "options" field is meaningful only on those cards contain-
ing an "assignment" field. A space must follow the last unit number
on cards of Types I and III.

All tapes at the end of a Jjob are automatically rewound, except when
a dollar sign ($) is encountered as the last character of a tape label.

(3) MSG Control Card: (Variable Field Format)
1 30

VIH MSG message to be typed

The MSG control card is used to type a message to the operator. The

' 29 April 1966 b-13

typing will be prefaced by the line MSG and will commence with the
first non-blank character of the specifications field. If the op-
tions filed contain an H (as in the example), the operator will be
given the opportunity to execute or scratch the run by causing a
wailt loop. Typing may be suppressed (resulting in the printing of
the MSG control card on the printer only) by an N option. In this
case, the H option is not effective.

(4) PMD Control Card: (Variable Field Format)
1 80 |

vic PMD specifications

The PMD (Post-Mortem Dump) control card may be used to dump core
memory following the execution of an object program. Dumps may be
made of segments, elements, or specified parts of elements, as long
as they were currently in the memory at the time the routine was
terminated. Several options are available for output formatting,
and core areas to be dumped. The option C (in the example) will cause
a dump of the words that were changed during the execution of the al-

.» located program for the area of core prescribed by the PMD card. In
the event no DUMP is available, the message

NO PROGRAM EXECUTED--NO DUMP TAKE
is printed and the PMD card is ignored.

The option field may contain the following letters:

E--causes the PMD card to be processed only when the previous
routine terminated at systems error exit MERR$.

C--causes a dump of the words that were changed during the
execution of the allocated program for the area of core
prescribed by the PMD cargd.

B--causes, after processing the rest of the PMD card, an
octal dump of all of blank common storage area. If used
with the C option, it will be ignored. (Changed word
dumps of hblank common may be taken when requested as a lo-
cation counter under the blank option (See UNIVAC 1107
LIBRARY II, Section 8.2.2).

Q-~used for absolute dumps of arbitrary areas of core.
M--obtains a mnemonic Post Mortem Dump. This option will

be overridden if any format other than 8014 is specified
‘ or if a Change Word Dump is requested.

29 April 1966 o1k

(5) ELT Control Card: (Variable Field Format)
12 S0

v ELT name/version (flag), type, date time

The ELT control card introduces an element into the current program
complex file from punched cards. The ELT is always followed by the
cards containing the element. Name/version is the name or name and
version to be associated with the element. The field type gives the
type number of the element. If omitted, Type 1 (source language is
assumed. The date and time fields identify when the element was cre-
ated or last altered. The date is punched as a six-digit decimal num-
ber of the form yymmdd, and the time is punched as the decimal number
of seconds from midnight. If these fields are omitted when an ELT is
read, the current date and time will be entered into the element table.
When an element is punched by a processor or by CUR, it is always pre-
ceded by a suitable ELT control card. Such decks can simply become
part of the input to subsequent runs. The complex utility routine
(see UNIVAC 1107 EXEC II Programmer's Guide U-36T1) is called into
play when an ELT card is encountered. No option letters are associ-
ated with an ELT control card.

(6) HDG Control Card: (Variable Field Format)
2 30)

vIiN HDG heading line (columns 13-72)

The HDG control card is used to give heading information for printer
output from the run. The Heading control card must precede any Pro-
cessor control cards in the run. A page number and current date ap-
pears to the right of the printed heading. Options are: '

N--Turn off page heading on print output
P--Reset page count

(7) TPR Control Card: (Variable Field Format)
1.2 80

vis TFR label

The TPR control cards may be used by the programmer to specify which
1/0 device--printer or magnetic tape--is to be used as the standard
output device. Since these cards override Print Cooperative Key-Ins,
they must be used with caution. '

| ‘ 29 April 1966 k.15

The option may be an S (as in the example) to permit switching to

the next tape in the string of assigned .PR tapes at the beginning

of the run in which the TPR card is encountered. The label field
may contain up to six alphanumeric characters, if desired. The first
word of each tape block contains this label. The TPR card must im-
mediately follow the RUN card. .PR tapes may be printed on the 1107
and 1401.

See Paragraph 4.5.2.2 for further information on off-line print routines.

(8) DPR Control Card: (Varisble Field Format)
1 &0

v DFR

- - -
The DFR control card is used to route printer output to drum storage.
There are no options or labels.

4-16

29 April 1966

4.2.1.2 Card Control Control-Card Description

The card-control control cards are summarized in Figure 4-3. A de-
tailed description of the control cards and their use is provided.

SEE
PAR. Lk.2.1.2 MNEMONIC APPLICATION OPTIONS
(1) EOF To punctuate a data check. None
(2) FIN To mark the end of a card stream. Not None

normally required by the programmer

Figure 4-3. Card Control Control-Cerd Summary

29 April 1966 17

An individual description of the Control Card control-cards is as
follows:

(1) EOF Control Card: (Fixed Field Format)

T2 I3[5515617 80

v EJO}F

The EOF control card is used to punctuate a data check. Column 7
may contain any character, and Columns 8 through 80 are ignored.
There are no options. On encountering an EOF card, the subroutine
exits to the abnormal return with the character in Column T located
in AO.

(2) FIN Control Card: (Fixed Field Format)

112] 3145 T 30

v FII|N

The FIN control card marks the end of a card stream. It is not nor-
mally required by the programmer. There are no options.

29 April 1966 4-18

h.2.1.3 Processor Call Control-Card Description

The Processor Call Control Cards are summarized in Figure L-k. A
detailed description of the control cards and their use is provided.

SEE
PAR. 4.2.1.3 MNEMONIC APPLICATION OPTIONS
(1) ASM To call out Assembler ILNPSWXYZ
(2) FOR To call the FORTRAN Compiler A DILNPSTWXZ
(3) MAP To call out the memory allocation RINPSWX
processor
(&) PDP To call out the procedure defini- MXLIS
tion processor

Figure 4-4. Processor Call Control-Card Summary

. 29 April 1966 k.19

An Individual description of the Processor Call control cards is as
follows:

(1) ASM Control Card
121314 30

v ASM loc nl/Vl: nf;/V,, na/Va (flag)

The ASM control card calls out SLEUTH 11 assembler. There are nine
options for Column 2. (See UNIVAC 1107 EXEC II, Section V.) Loec
gives the location of the input: omitted, input from cards; *,
input from the complex on drum; an alphabetic character, input from
corresponding logical tape unit. The specification nl/vi is the
name or name/version source language element, if one exists; n, /v,
~is the name or name/version of the updated source language element,
if one exists. (If this field is omitted no updated source language
is placed in the complex.) The nh/Vé is the name and version to be
applied to the relocatable element code resulting from this process-
ing (if omitted, the relocatable element will have the same name as
that of the updated source language element, and a version name CODE).
. Flag 1s a string of alphabetic characters enclosed in parentheses,
giving the flags to be associated with the newly created relocatable
code (if this is omitted, the flag associated with the relocatable
code is taken to be all zeros).

(2) FOR Control Card

The FOR control card calls out the FORTRAN compiler. (Same general
rules as in (1).)

(3) MAP Control Card

The MAP control card calls out the memory allocation processor.
(Same general rules as in (1).)

(4) PDP Control Card
123 & 5

v PDP, loc m /vy, ny /v,

The PDP control card calls out the procedure definition Processor.
The PDP accepts source language defining SLEUTH II procedures and
builds an element to be included in the program complex file. There
are five options for Column 2. (See UNIVAC 1107 EXEC II, Section V.)
The specification loc indicates whether the element is to be taken
from cards (loc is omitted); from drum (*); or from tape (alphabetic
character referencing the proper tape unit). The n1/¥1 is the name
‘ and version of the source input element, and may be either a source
language element (type 1) or a procedure element (type 7). The

29 April 1966 k-20

na/vg is the name and version to be applied to the procedure element
code resulting from this processing (if omitted, the procedure ele-
ment produced by PDP will be entitled n, /CODE).

In the options field of an ASM or FOR card, one or more of the fol-
lowing letters may appear: A, I, L, N, P, S, X, Z. Each of these
letters represents a single option:

A--accept the results of the processing as correct, even
though errors were detected.

I--single space listing without relocation information.
L--produce a complete printed listing.

N--suppress all printing by the processor.

P--punch the resulting relocatable element into cards.
S-~punch the (updated) symbolic language in compressed

form. If both P and S are specified, the compressed
symbolic deck will appear first.

X--abort the remasinder of the compilation if any errors
are detected by the processor.

Z--suppress the formation of information to be given
the diagnostic system.

Ordinarily, the L and P options will be used. If no P option appears,
no punched deck will be output. If the L option is dropped, a list-
ing of the symbolic input deck will be output without the correspond-
ing assembly. If the N option is used, no listing will be output un-
less errors are detected in the program.

An additional option letter W will list all correction cards, 1f any.
In FORTRAN, the option letter T will return the compilation time.

’ 29 April 1966 L.21

L.2.1.b Allocator Control Control-Card Description

The Allocator control cards are summarized in Figure 4-5. A detailed
description of the control cards and their use is provided.

The allocator 1s a system routine which collects subprograms and in-
terconnects them. Cross-reference between these subprograms are re-
solved and relative locations are assigned. Depending on how the
allocator is called, it may go on to produce an absolute program
which is put away on drum. Finally, this absolute program may bhe
loaded into core and run.

The allocator will also, unless requested otherwise, construct a
group of tables which serves as one of the inputs to the diagnostic
system. If desired, the allocator can work with the output of the
memory allocation processor in order to provide a flexible and so-
phisticated segmentation ability. In the absence of a map, the
allocator assumes that all subprograms and common blocks will occupy
core simultaneously.

the allocator. These cards cause, respectively, the allocator to
construct (if necessary) an absolute program and execute it; to con-
struct an absolute program and put it into the user's drum PCF; and
to construct a relocatable program and put it into the user's drum

. Three separate control cards, XQT, ABS, and SCD, result in calling

PCF.
SEE
PAR. 4.2.1.4 MNEMONIC APPLICATION OPTIONS
(1) XQT To execute a program (including ACLNXZ
allocation, if required)
(2) ABS To produce an absolute program ACLNXZ
(3) SCD To define a subcomplex ACINPX

Figure 4-5. Allocator Control Card Summary

29 April 1966 L.2o

An individual description of the Allocator control cards is as
follows:

(1) XQT Control Card: (Variable Field Format)
1 80

" XQT, A name /version,i

The XQT control card is used to execute a program (including allo-
cation if required). The)\ is the letter to be used in selecting
elements for the basis of their flags. There are six options for
Column 2. (See UNIVAC 1107, EXEC II, Section V.) The name/version
is the name or name and version of the program to be executed. The
i, when present, is a decimal integer indicating how many times to
go through the FORTRAN error routine, NERR$, before terminating.

(2) ABS Control Card: (Variable Field Format)
1 80

v ABS, A name/version, name/version

The ABS control card is used to produce an absolute program, as it
does for the XQT control card. In this instance, however, the re-
sulting program will not be executed, but instead will be entered
into the program complex file as an absolute element. The second
name /version field becomes the name of the element.

(3) SCD Control Card: (Variable Field Format)
1 80

v SCD, A name/version, name/version

The SCD control card is used to define a subcomplex. This card be-
haves much as does the ABS control card. A relocatable element is
inserted into the complex, rather than an absolute element. To be
useful, a SCD control card will usually require a map. For details,

see UNIVAC 1107 EXEC IT, Section VI.

In the options field, one or more of the following letters may appeer:
A, C, L, N, X, Z. Each of these represents a single option:

A--accept the results of processing as suitable for
execution even though errors were detected.

C--make the following patches.

L--Produce a complete allocation listing and map.

29 April 1966 423

N--Produce no allocation listing.
X--abort. Do not execute if errors detected.

Z-~suppress the formation of information to be given
the diagnostic system.

The A option will be overridden if the errors are sufficiently serious
to prevent execution. If neither the L nor N option is specified, a
partial listing will be produced. The N option will be overridden if
diagnostics are produced.

4.2.1.5 Programming Procedures

This paragraph will describe basic programming procedures for the
Univac 1107 computer. For detailed information, consult the UNIVAC
1107 EXEC II Programmer's Guide, U-3671, and the Library II Program-
mer's Guide, U-3672.

To communicate with the 1107 monitor system, the following deck set-
up 1s required:

V RUN identification, account, running time, output
Voptions FOR program name
FORTRAN IV source program
Voptions ASM program name

SLEUTH II source program
Voptions XQT program name

Data Cards

vV EOF

Data Cards
Voptions PMD specification field
vV FIN

The program name on a FOR or ASM card need not be the same as the
actual name of the routine but is limited to six characters. The
program name on the XQT card is the name of the first program to
be executed, and this name must appear on a FOR, ASM, or ELT card.
If only a compilation is desired, the XQT card is omitted.

The PMD card is discussed under Debugging in Paragraph 4.2.3.2.
h.2.2 PROGRAMMING AIDS

This paragraph presents to the programmer tips and techniques, as

well as precautions to be considered while performing programming

functions. These programming aids should be of help to the programe=
mer in his utilization of the EXEC II System,

29 April 1966 Lol

)'*'.2 l2 .l

d.

Debugging

For programs written in SLEUTH II, several procedures and programs
are available which will aid the programmer in debugging.

In most of the dump procedures, a format must be specified. The
standard formats are:

™' standard octal format plus mnemonics¥*
Pt (8F14.8) fixed decimal

'E' (8E1L4.8) floating decimal

Tt (8I14) integer

'A' (16A6) alphanumeric

‘@' (8014) octal

*There is no mnemonic dump on the 1108. An octal dump
without mnemonics will be glven instead.

Any message up to 120 characters may be produced on the Printer by
use of the X$MESG procedure:

X$MESG k
'diagnostic message’

where k is the number of words in the diagnostic message.
A dump of thin film may be produced by the X$FIIM procedure:

X$FIIM start, length, format
which results in length film locations beginning at film location
start belng edited and printed according to format as described
above. Start and length locations may be either symbolic, decimal,
and/or octal addresses.,
The X$CORE procedure dumps core memory:

X$CORE start, length, format
which results in length core locations beginning at core location
start being edited and printed according to format as described
above. Start and length locations may be either symbolic, decimal,
and/or octal addresses.

The X$DUMP procedure dumps thin film and core memory:

X$DUMP start, length, format, registers

. 29 April 1966 ' L.25

which results in a panel dump of the current state of the machine,
B, A, and/or R registers and a printout of core memory where regis-
ters, printed in octal, are specified by the letters B, A, or R, or
any combination. "length" core locations are dumped beginning at
core location "start'and edited and printed according to the format
as described above. If registers are not desired, the field should
be left blank. Start and length locations may be either symbolic,
decimal, and/or octal addresses.

A dump may be specified at the end of the program. This is speci-
fied by the PMD control card:

Voptions PMD specifications
where ¥V is the 7-8 multipunch.

Options include:
C--changed-word dump
E--dump executed only if program exits through error
B--will cause octal dump of Blank Common
A=-dump of Bank 2 named in spec. list*
I--Gump of Bank 1 named in spec. list#*
*Only one of these may be specified in a single PMD card.

X--if A, D, or I specified,dumps everything except that which
is named in the spec. list.

M--standard mnemonic dump. (Does not work with C option.)**
**¥There 1s no mnemonic dump on the 1108. An octal dump with-
out mnemonics will be given instead.

Specifications include:

a. If no A, D, or I are specified, the spec. list must have
the form:

name, start, length, format

name is the name of an element; start is of the form n$m, where
n is an address relative to location counter m; length 1s the
number of words to be dumped in format.

b. If A, D, or I are specified, the spec. list must have the
form:
name 1, name 2, name 3 (etc.)
where name X is an element or segment name.
c. An unconditional dump governed by the specification is given

if there are no options. If there are no options or speci-
fications, no dump will be taken.

29 April 1966 L-26

f. PDUMP, FPDUMP, and DUMP take storage dumps as specified by arguments
(A,B,I), restore the condition of the machine, and return to the pro-
gram which called themn.

The general form of the PDUMP statement is:

CALL PDUMP (A, By, T, +.. A, B, In)

where A and B are variable data names indicating limits of core
storage to be dumped. Either Ai or B, may represent upper or lover
limits. Ii is a FORTRAN integer indicating the format desired, as

follows:
I=20
I=1 dump in floating point
I=2 interpret as decimal integer
I=3 dump in octal with mnemonics

If a PDUMP CALL is made with no arguments, the entire user's program
core area is dumped in octal.

If the last format in a string of arguments is omitted, the area of
core between the two specified dump locations will be dumped in octal.

When PDUMP is executed, the machine is restored to its condition upon
entry, and control is returned to the next executable statement. The
storage dumps appear on the printer with other dump output from the job.

L,2.2.2 1107 Item Advance Routines

The item I/O routines relieve the programmer of the task of item hand-
ling chores when designing a SIEUTH II program. Routines are designed
by procedure calls which generate ohject coding in the user's program.

(1) Input Procedure Files:

Funetion AnOPEN--Open input file n. Routine reads list block,
transfers first item (contains label) to work-storage (item-
ws). Initiates a read of the next block (data) into the input
area (block-storage). (Reads two blocks of data for buffered
option.)

Function AnREAD--Read input item from file An. Transfers current
input item to input working storage (item-ws). Initiates refill
of the input area (block-storage)after transferring last item.

29 April 1966 hoot

k.2.2.3

h.o.2.4

h.o.2.5

(2) Output Procedure Files:

Function BnOPEN--Open output file Bn. Routine transfers one
item (label) from work storage (item-ws) to the output area
(block-storage) and initiates a write of this block.

Function BnWRIT--Write output item of file Bn. Transfers cur-
rent item from working storage (item-ws) to the output area
(block-storage). Initiates a write of one block when the out=
put area is full.

Function BnCLSE--Close output file Bn. Fills any remaining out-
put area (block-storage) with any specified sentinel, and writes
this block followed by one EOF mark. CALL this routine twice in
succession to insure two consecutive EOF marks.

For more information, contact Mrs. Pat Barnes of the Programming
Methods Section, Advanced Projects Branch, Building 3, Room 127,
Extension 6796.

1107 Analyzer

The programmer should find the object program analyzer very useful in
debugging operations. This routine is in the standard systems library,
and it will analyze a selected area for all cross references (XREF)
within a group of selected areas. Output is an HSP listing, giving

the address and instruction of XREF's. Constants that can be recog-
nized as such are edited in octal. Some constants, however, are in-
distinguishable from instructions and will be so edited. For more
information, contact Mrs. Pat Barnes as noted in Paragraph 4.2.2.2,

1107 Editing Routine

This library routine alleviates the programmer of attending to tedious
editing considerations when printing on-line. By describing a printed
pege vie a parameter list, the main program need only communicate with
the routine when a line of data is to be printed. All responsibili-
ties for spacing, headers (single or multi-line), page count, and
paper~feeding (PLINE$) are assumed by the editing routine. For more
Information concerning this, contact Mrs. Pat Barnes as noted in Para-
graph 4.2.2.2,

Save and Restore Routine

The routines to save and restore all A and B registers have been in-
corporated into the system library. For more information, contact
Mrs. Pat Barnes as noted in Paragraph k.2.2.2.

29 April 1966 428

h,2.2.6

h.2.2.8

4.2.2.9

Data Generator Routine

This routine can be used to alter data information in core to assist
in realistic program checkout. The data image is assumed to be in
core initially. The data may be dynamically altered by the program-
mer between calls. For more information, contact Mrs. Pat Barnes as
noted in Paragraph 4.2.2.2.

Diagnostic Trace (SNOOPY)

SNOOPY is a Adiagnostic library routine designed to assist in program
checkout. SNOOPY will printout film information (as per options)
whenever a successful skip or jump instruction occurs. Calling SNOOPY
results in the location begin address being preserved and a link to
SNOOFY being inserted. When this instruction is executed, SNOOFY
takes control, restores the link, and snoops until end add, where

it returns control.

The programmer may take snapshot dumps at any instructlon by coding

a list of dump parameters. The dump will be taken following the exe-

cution of the instruction. The number of such parameter pairs is un-
restricted and is specified by # dumps. For information, contact Mrs. .
Pat Barnes as noted in Paragraph L.2.2.2. :

Label Check Routine

This routine is developed to provide the programmer with a standard
label checking ability. For more information, contact Mrs. Pat Barnes
as noted in Paragraph 4.2.2.2.

Trigonometric Functions

For compatibility with the FORTRAN system in use on the IEM 7094 's
within the Data Systems Division, the following function subprograms
have been added to NASA UNIVAC 1107 EXEC II Library:

Function ACOSD (y)--computes principal value of Arc Cosine
vy in degrees.

Function ASIND (y)--computes principal value of Arc Sine y,
in degrees.

Function ATANGD--(y,x)--for signed inputs y, x computes angle
between 0° and 360° whose tangent is y
divided by x.

Function COSD (a)--gives Cosine of input angle expressed in degrees
Function SIND (a)--gives Sine of input angle expressed in degrees

‘ 29 April 1966 h-29

L.2.2.10

y.2.2,11

h.2.2.12

k.2.2.13

Function ATANGR (y,x)--for signed inputs y,x computes radian
angle between O and 2r whose tangent
is y divided by x.

Function ACOSR (y)--computes principal value of Arc Cosine Y,
in radians.

Function ASINR (y)--computes prineipal value of Arc Sine y,
In radians.

Anyone desiring more information on these routines should be directed
to Mrs. Pat Barnes of the Programming Methods Section, Advanced Pro-
Jects Branch, Bullding 3, Room 127, Extension 6796.

Trace Routines

The trace routine is a blend between a software and hardware trace.
Software components are necessary to allow for restoring register

R3 after a trace interrupt occurs. They also permit establishing
the locations of all executed JMGI/MOJP (which are not provided by

a trace interrupt) and of all instructions performing a skip. The
hardware components of this routine are used solely for detecting
that a jump instruction was executed, for obtaining the address to
which control was to be transferred, and for returning control to
the trace routine. See An Improved Approach to Trace Routines X-
545-65-115, Goddard Space Flight Center. (NO trace routines on 1108.)

SETEOF

A FORTRAN programmer may now return to his program upon reaching an
EOF in formatted input. Prior to instituting his read, the program-
mer should

CALL SETEOF ($n)

where n is a statement number in the calling program to which the
programmer wishes to go upon reaching an EOF.

S=C_4020 Package

The Lockheed S-C 4020 Package 1s on the system library. There are 8
number of GSFC modifications to this package; details are obtainable
from Mrs. Pat Barnes, Programming Methods Section, Advanced Projects
Branch, Building 3, Room 125, Extension 6796.

MOVER

This routine extends the re-read feature of FORTRAN IV. TIts calling
sequence is

CALL MOVER (X)

29 April 1966 L-30

h.2.2.14

L.2.2.15

h.2.2.16

where X is the location of the image which the programmer would like
to process on his next reference to the re-read unit, which is FORTRAN
logical unit O in the standard FORTRAN I/0 table. This allows a pro-
grammer to re-read a given set of data at any time in his program,
rather than only immediately after it is read. It should be noted
that any read statement will reset the reference, so that no-read
statements should lie between the CALL to MOVER and the re-read
statement.

TACE

This routine allows FORTRAN programmers to ignore the character-count-
error interrupt (interrupt code 708) on input tapes. Its calling se-
quence is

CALL TACE (ITAPE)
where ITAPE is the FORTRAN logical unit on which the interrupt is to
be ignored.
JFACTO

The following procedure may be called at or near the beginning of the
user's program:

JFACTO name(1) name(2) name (3)
Specifying a name(l) will determine which set of mnemonics is defined
internal to the calling program. These are summarized in Table I of

the 1107 Programmer Note 3, Data Processing Branch, Information Pro-
cessing Division, T&DS.

Tape Transfer Subroutine

If a SLEUTH II program wished to reference tape drives by some logi-
cal unit letter designatore, but the tape drives had been previously
assigned to R(«#P), those tapes were heretofore unaveilable. This
subroutine allows all tape drives associated with « to be referenced
by B, and inversely.

The calling sequence
LMY 11, TXFR§
+lxp?
(where = and B are any valid logical unit designators) will attempt
to interchange tapes associated with « and g. If transfer is per=-
missible, register 12 (A@) is positive upon return to user; if not,

register 12 is negative. Transfer is permissible if all of the
following are met:

29 April 1966 431

(l) logical unit designators are valid

(2) no tapes affected by the transfer are assigned to
EXEC IT proper or the parasites (NOTE: unassigned
tapes and tapes assigned to the user are treated
identically)

(3) the current tape operation has been completed (NOTE:
if an operation is in process, TXFRE will wait for
completion and then perform the interchange)

h.2.2.17 TUTIL

h.2,2.18

L.2.2.19

This program provides the user with various tape operations which
are executable at arbitrary points in his run deck. The utility
program is called by the card

VN XQT TUTIL
Following this card is a stream of cards specifying the tape oper-
atlons to be performed. This operations card stream is terminated

by any non-EOF control card. For details, see 1107 Programmer Note
6, obtainable from Mrs. Pat Barnes, Building 3, Room 125.

PSWTCH

There are two methods the prograrmer may use to determine the state
of an indicated program switch. The first is by the subroutine call

CALL PSWTCH (n, variable name)

where n is a program switch (1 <n< 36) and variable name is a vari-
able which is to receive the integer value 1 if switch n is off, or
2 if n is on. The second is by the function call

PSWTCH (n)

where n is a program switch (1 < n < 36) and the function will receive
the integer 1 if switch n is off, or 2 if n is on. In both cases, if
n has been previously spEbified or is out of range, the standard
FORTRAN error exit will be taken. See 1107 Programmer Note 4, obtain-
able from Mrs. Pat Barnes, Building 3, Room 125.

CalComp Routines

(1) crLoTS

CPLOTS must be called before any of the other CalComp routines are
used. It need be called only once. The main purpose of this routine
is to set up a buffer area in which to store the CalComp commands.

29 April 1966 432

4h,2.2.20

(2) CCPLOT

This subroutine will write a tape that is readable by the CalComp
570 Plotter, draw graphs, maps, plots, etc.

(3) SYMBOL

The purpose of this routine is to create commands that will produce
alphabetic characters, numerals, and other selected symbols on the
CalComp 570 Plotter.

(4) PACRAT, PAKRAT, SHIFTY

The purpose of these three routines is to generate input data for
the SYMBOL routine. However, they may be found useful for other
purposes. PACRAT packs Fieldata characters stored one to a word,
left-justified, into consecutive locations, such that there are 6
Fieldata characters per word. PAKRAT stores FORTRAN integers one to
a word, left-justified, into consecutive locations, such that there
are six Fieldata characters per word. SHIFTY shifts a FORTRAN inte-
ger so that the least significant six bits are stored in the left-
most six bits of another word.

Standard FORTRAN I/0O Table for Univac 1107/1108 EXEC II System

FORTRAN programs using I/O devices will automatically call on the
standard I/O table, provided the user has not specified one of his
own. The standard I/0 table is listed in Table L-2.

29 April 1966 4-33

Table 4-2. Standard FORTRAN I/0 Table for Univac 1107/1108 EXEC IT

FORTRAN Logical Specific
Unit Number I/0 Device
0 Reread Unit
1 B)
2 C
3 D
L E
5 F
6 G
T H
8 I
9 J
10 K
11 L
12 M
13 N
1k4 0 Tape
15 P ?Units
16 Q
17 R
18 S
19 T
20 U
21 v
22 W
23 X
2L Y
25 Z
26)
27 -
28 A
29 Not Used
30 Not Used
31 Card Reader
32 Printer
33 Card Punch
3k Console
35 Drum File 1%
36 Drum File 2%

*The standard drum files are both l&DOOOQBlocations long and Drum File 2 se-
quentially follows Drum FPile 1. On the 1107, Drum File 1 begins at location
26000000 ; on the 1108, Drum File 1 begins at location 31000000,.

NOTE: The~ Card Reader, Printer, and Card Punch are defined as ‘units -1, -2,

and -3, respectively. Programmers writing their own I/O table should so note.

The entry point for the I/O table is defined as NTAB$. (NTAB$ is logical unit

O, NTAB$+1 is logical unit 1, etc.)

29 April 1966 b3k

4.3

L.3.1

4.3.2

4.3.3

4.3.3.1

OPERATING PROCEDURES

The operating procedures are developed here for quick reference.
For details concerning operating instructions which are directed
toward the EXEC II System, see Section 8 of the UNIVAC EXEC II
Programmer's Guide.

TAPE BOOTSTRAP ROUTINE

The EXEC II Load Tape (COSM) has as its second block* a 224-word
Bootstrap Routine which serves to bring in the remainder of the
resident and various other parts of the system. The Bootstrap Rou-
tine also provides a simple card load routine, & panic dump, and a
method of patching the resident system prior to writing it to drum.

DRUM BOOTSTRAP ROUTINE

Once the system has been set up, it may be reinitiated by performing
a manual bootstrap operation from appropriate drum channel. No con-
sole jump switches are effectual from a drum bootstrap. Whenever the
system has been bootstrapped from either drum or tape, date and time
key-ins should be performed and the real-time clock turned on.** 1In
addition, the printer forms should be adjusted to print on physical
line one.

BASIC SYSTEM KEY-INS (OPERATOR ACTIONS)

The primary control exercised by the operator over the Monitor System
is by means of system key-ins. A system key-in is one made that is
not in response to a specific request by the running program. The
first character of key-ins always determines the routine which is to
process the information entered into the computer. What follows this
first character depends on the specific type of key-in.

E and X Key-Ins

System key-ins of E and X are used to terminate the program currently
being run. The E key-in is normally used in situations such as the
program entering a closed loop. An X key-in is usually used when the
program reaches some impasse, such as a request for a non-existent
tape reel, etc.

“#Block 1 1s a hardware test. On the 1108, Block 1 is the boot block and is
2000, words in length.
**Time Key-In is not necessary on the 1108. May be booted without turning off

RTC.

29 April 1966 4-35

4.3.3.2

4.3.3.3

4.3.3.4

4.3.3.5

4.3.3.6

h.3.4

D and T Key-Ins

The D key-in is used to enter the current date into the system. The
T key-in is used to set the system clock to the current time of day.
The date and time key-ins must be used each time the system is brought
from tape or drum.¥

W Kez-In

The W key-in is used only to cause a delay in the user's program; any
parasite operation continues.

S Kez-In

The S key-in is used primarily to cause the system to continue after
having delayed. Reasons for delays may be caused by 1) the program

running, 2) an MSG control card with an H option, 3) the occurrence

of a new run when the system is in the stop between jobs mode, or k)
a system key-in of W (see Paragraph 4.3.3.3).

LF KeX-In

The LF key-in provides for approximately four inches of paper from
the typewriter to be spaced to allow paper to be conveniently torn
off.

A Key-In

The A key-in is used for making magnetic tape assignments. There are
four options:

A, AR--assign and rewind
Al--assign, and rewind with interlock

AN--assign without rewind

SYSTEM KEY-INS FOR INPUT/OUTPUT CONTROL

The system key-ins C (continue), R (recover), and F (fault) are used

to exercise control over input/output operations which did not function
normally. They are used to respond to type-outs produced by the sys-
tem. The proper response depends on the kind of input/output device
involved and the particular message produced.

*Time Key-1In is not necessary on the 1108. May be booted without turning off

RTC or Day Clock.

29 April 1966 4-36

L.3.4.,1 The Card Reader

The messages produced by the card reader are:

(1) CARD INTIK nn

This card reader has filled a stacker or the last card detected
is not a properly punched FIN card.

(2) VERIFY ERROR nn

The card reader failed to read a card properly.

(3) CODE ERROR nn

An invalid character code was read.

(4) CARD FAULT nn

The card reader 1s inoperative.

4.3.4.2 The Card Punch

The messages produced by the card punch are:

(1) PUNCH INTIK nn

The card punch has exhausted its supply of blank cards, filled
a stacker, or filled its chip box.

(2) PUNCH FAULT nn

¢ The card punch is inoperative.

4.3.4,3 Magnetic Tape

Messages concerning magnetic tape are:
4.3.5 SYSTEM KEY-INS FOR SYMBIONT CONTROL

Symblonts must receive all of their control through the operator's
keyboard. Key~-ins used for control of symbionts are thoroughly
described in the UNIVAC 1107 EXEC II Programmer's Guide and for
additions and modifications, Goddard's Computer Operator's Manual.

L.3.6 TYPEWRITER MESSAGES PRODUCED BY THE MONITOR

During execution of programs under the EXEC II System, there are vari- ‘
ous messages produced on the typewriter. Consult the UNIVAC 1107 guide.

29 April 1966 b-37

L.y

L.k

L.y.o

L.).3

Lok

BIBLIOGRAPHY

This section provides the user access to the list of documents de-
scribing the ma jor components of the EXEC II System. For each docu-
ment, there is provided an abstract.

UNIVAC 1107 EXEC 2 User's Manual, NASA EXEC 2 Processor Modified
Version of the UNIVAC System
X-543-64-212, Goddard Space Flight Center

This document is intended as a working guide for the programmer using
the NASA EXEC II System on the Univac 1107 computer. The EXEC II Sys-
tem has been modified and conventions for its use differ from one in-
stallation to another. This Manual is an attempt to assemble documen-
tation of this nature into a single source. Besides the addition of

two additional control cards, this Manual presents programming proce-
dures, aids for debugging, and describes the NASA Auxiliary Library

Tape as well as utility routines. This document is essentially obsolete.

UNIVAC 1107 EXEC II Programmer's Guide, General Manual
U-3671

This Manual describes the EXEC II System and its supporting routines.

- It presents detailed specifications as to the form and content of con-

trol cards that exercise control over the EXEC II System; explains the
input/output facilities, the brogram complex file, the memory allocation
processor, the auxiliary processors; as well as commenting on operating
instructions and the role of the symbiont (a small multiprogrammed
routine).

UNIVAC 1107 Library II Programmer's Guide, General Reference Manual
-3672

This Manual presents to the programmer a description of the I/0 pack-
ages for the commnication with magnetic tape, drum, console, and paper
tape, as well as explaining the EXEC II diagnostic system. In addition,
the buffering routines for block and item level handling are described.

UNIVAC 1107 SLEUTH IT Programmer's Guide, General Manual
-3670--Rev., 1

This Manual provides a basic introduction to the SLEUTH II assenbler
language, describes its directives, and explains their use, and further
presents a brief programer's guide to the SLEUTH II language.

29 April 1966 4-38

b 4.5

L.4.6

h.h,7

4L.4.8

UNIVAC 1107 Central Computer, General Manual
UP-2463--Rev. 2

This hardware-oriented Manual provides & description of the Univac
1107 Computer and its principal components and an explanation of the
instruction word form and of the Univac 1107 instructions, with ex-
amples of their use. Input/output operations are presented only
briefly.

Decimal to Octal Conversion Table for Decimal Values O to 65,999
X-542-64-118, Goddard Space Flight Center

This document consists of tables of octal and decimal numbers.

S-C 4020 Programmer's Manual

This manual includes the modified Lockheed S-C 4020 Package which 1s
on the system library.

UNIVAC 1108 EXEC II, Programmer's Reference Manual
UP-L058

This Manual is intended to be a guide for programmers using the EXEC
II System on the 1108. There is sufficient information on fundamen-
tal concepts of the internal structure and operational qualities of
the system. Background information is also provided to permit even
those who are unfamiliar with EXEC II to learn the system. There are
four major sections dealing with 1) structure of the EXEC II System as
it exists in core and on drum; 2) controls--both the control of the
executive over the machine environment and the user control over the
executive; 3) the references required by the programmer to build and
test a worker program; and 5) job set-up, which essentially presents
in capsule form the material covered in the previous sections.

29 April 1966 4-39

h.5

L.5.1

AUXILIARY TAPE CONTENTS

The primary purpose for creating the NASA Auxiliary Library Tape is
to make available to the programmer library routines that cannot be
put on the program complex file because of the limited drum space
allocated for the system. There are two files generated.,

AUXTILTARY LIBRARY DECK SET

Figure 4-6. shows the deck setup that must precede the program in
order to use routines in the Auxiliary Library. If all the routines
in the auxiliary library are not to be used, the IN)\ card should be
replaced with the following:

FIND A, YYYYYY/772777
TRD A

for each routine desired.) is the logical designation of the
UNISERVO upon which the auxiliary library tape is mounted; AUXLIB

is the label assigned to \; YYYYYY is the name of the routine gde-~
sired; and ZZZZZZ is the version name. The IN will read a file and
place the elements it contains in the program complex until an end-
of-file is reached. The FIND searches the tape until either the
element is located or an end-of-file is reached. TRD will read one
element from the specified unit and place the element in the progrem
complex.

NOTE: When using the Auxiliary Library Tape, be sure that the tape
has been positioned at the beginning of the file which contains the
desired routines. For efficiency, the routines should be called in
the order of their appearance on the tape.

~L
{ INA \
{ TRW) | TO ASSURE TAPE POSITION AT FILE | N\
{ v XQT CUR \
([vASG A = AUXLIB \

|

Figure 4-6. Sample Auxiliary Library Tape Setup

29 April 1966 L-40

4.5.2 FIIE 2 (Independent Executable Programs)
File 2 of the auxiliary library tape consists of four programs.
L.5.2,1 CUILL

CULL provides a reference-map of a SLEUTH II program. CULL associates
each occurrence of a name (alphabetic or numeric) in a program with the
line number and name of the program in which it occurs. EFEach name oc-
currence (which is a label with an asterisk) is tagged. The completed
map is in alphanumeric order. In the deck setup, X is the tape unit
assigned to the auxiliary library tape; yyyyyy is the label of the aux-
iliary library tape; xxxxxx is the label of the blank tape; PROGn/VERSn
are in the name/version of the routines to be culled; and PROGRAM is
the name of the program to be executed.

NOTE: G is used as the CULL input tape. First, the entire program deck
is loaded into PCF. Before execution of the program, those routines
which are to be CULLed are written out on Tape G. The program is then
executed. Following execution, CULL is read into PCF and executed.
CULL is part of the second file on the Auxiliary Library tape and is
entered into the user PCF by the complex utility routine.

e O

{v A XQT CULL

{ TRD X

(_ FIND), CULL/NASA \
(ERS
(PEF)\ \
(_TRW) W‘W
(¥ xaT_Cur \
(v R ASG G = XXXXXX
(v R_ASG A= AUXLIB

{ ¥ RUN
{v EOF
(7 XQT_PROGRAM ﬁ

(_TRI G
(TEF G
{ TWR G,PROG, /VERS B

(TWR G, PROGINERSIB -
TRW G »,
(v _xaT CUuR P
(PROGRAM DECK n \ -
(v ASM PROG,/VERSA, PROGn/VERS B \ w,
PROGRAM DECK | P
(v ASM PROGI/VERSIA,PROGI/VERSIB L

{9 R ASG G = XXXXXX -
(v RUN \ HP

»
P

Figure 4-T7. Sample CULL

29 April 1966 L1

h.5.2,2

FORTRAN II to FORTRAN IV-~Translator (LIFT)

The translator is a program which automatically translates a FORTRAN
II source program to a FORTRAN IV source program. The Translator
operates under control of the 1107 EXEC II Monitor System. The Trans-
lator is also part of the second file on the Auxiliary Library Tape
and is entered into the user's PCF by the complex utility routine.

If in the deck setup, A is the logical designation of the UNISERVO
upon which the Auxiliary Library tape is mounted, AUXLIB is the label
of the Auxiliary Library Tape. The programmer should consult the
UNIVAC 1107 FORTRAN II to IV Translator (LIFT) Programmer's Pro-
cedure Manual, UP~3863.

(Y FIN ‘\\\
(v EOF \

{ FORTRAN Il SOURCE DECK \
(v XQT LIFT ‘\\

(TRD)

(" FINDX, LIFT \\
(PEF \
(— TRW N\

(v xaT CUuR \

(¥ ASG A\ = AUXLIB \

(v RUN \

Figure 4-8. Sample FORTRAN II to FORTRAN IV--Translator (LIFT)

29 April 1966 h-ko

4.5.2.3 1107 FAP Translator

The FAP Translator is a program which automatically translates a
FORTRAN Assembly Program (FAP) to a SLEUTH II source program. The
program operates under control of the 1107 EXEC II Monitor System.

The programmer should consult the 1107 FAP Translator Programmer's
Guide (UP-2593.17) for detailed information.

(Y FIN \
(v EOF \

[SOURCE DECK TO BE TRANSLATED \
vV_XQT FAPPE \

(TRD)\
[FIND \, FAPPE/NASA \
(PEF)\
(_TRW) \\
(¥ xaT cur \
{Vv ASG A = AUXLIB \
(v RUN \
w
»
_—
|
-
w
L/
»
L/
|/

Figure 4-9, Sample 1107 FAP Trenslator

29 April 1966 443

h.5.2.4

Linear Programming

Linear programming is a mathematical technique for finding the best
or optimum solution to a particular problem. The optimum solution ,
may be in terms of the lowest cost, least effort, shortest time, or
minimum configuration of equipment to achieve a specific goal. With
linear programming, it is also possible to determine the courses of
action which will provide the greatest monetary return, the largest
number of units of a product, or the biggest level of efficiency.

In the deck setup, A\ is the logical designation of the UNISERVO upon
which the Auxiliary Library Tape is mounted. AUXLIB is the label to
the Auxiliary Library Tape. The programmer should consult the 1107
Linear Programmer User's Manual Preliminary UP-3897 for detailed
information. :

(VJVEO':N \\

{_LINEAR COMMAND DECK \
(v XQT 1107LP "“\\
{ TRD X ‘\\\
[_FIND X\, 1IO7LP “\\
_[PEF)\ \
{ TRW) ““\\
(v xaT cur ‘“\\
(VY ASG A\ = AUXLIB \
(V RUN \
|/
w,

Figure 4-10. Sample Linear Programming

29 April 1966 bk

L.6

L.6.1

L.6.1.1

UTILITY ROUTINES

This section describes those utility routines that have been pre-
pared for use by Goddard Space Flight Center programmers.

1107 UTILITY PROGRAMS

Tape Copy

This utility routine will accept assignments for up to eight input
tapes and eight output tapes. 1In the copy process, density and parity
may be varied by console key-in parameters. Also, data representation
can be changed from Fieldata to BCD, or the converse, or may be left
in its original form.

By appropriate manipulation of the tape copy parameters, the user may
perform such tasks as duplicating a tape, taking files from an input
tape and scattering them onto separate output tapes, and gathering
files from several input tapes onto a single output.

The tape copy routine may operate in any one of three environments:

1) a subprogram to a user's routine, 2) a standard operator's utility
program, and 3) a subroutine to the higher level Tape Utility Program.
Use of TCOPY$ is virtuallv the same from any environment.

To request TCOPY$, the programmer fills out the request card (1107
Instruction Card) indicating to the operstor the tape(s) desired.
The request card must be filled out in the following manner:

On one side of the request card is a large, almost empty space, label-
ed "Special Instructions." In this space, write the characters:
PPDDFTNN ‘

a. Under the first P, write the letter O or E, depending on whether
the input tape is of odd or even parity.

b. Under the second P, write O or E for the output tape.

c. Under the first D, write L or H, depending on whether the input
tape is of low or high density.

d. Under the second D, write L or H for the output tape.

e. Under the F, write one of the digits 1 through 99 to specify the
number of consecutive end-of-files at which the current copy
should terminate, or write a O to mean that TCOPY should ignore

“this parameter.

o 29 April 1966 kb5

f. Under the T, write one of the digits O (no conversion), 1 (BCD
to FD, card base), 2 (FD to BCD, card base), 3 (BCD to FD,
print base), or 4 (FD to BCD, print base).

g. Under the NN, write one of the numbers Ol through 99, to specify
the number of serial end-of-files at which the current copy
should terminate.

EXAMPIE: PPDDFTNN
EEHH3¢58

ANOTHER EXAMPIE: PPDDFTNN
OELLg2g6

Once control has been given to the TCOPY$ routine, requests for in-
put parameters are made. These concern parity and density settings,
format conversions, and copy termination characteristics. Any param-
eter specification normally comes from an input card; but, by sub-
stituting an EOF control card in its logical place, requests may he
made from the console.

‘ Since the TCOPY$ routine occupies much of core s> 1t 1s often necessary
for the user to define an overlay structure with the MAP processor.
The TCOPY$ routine has been written so that the Autoload feature of
MAP is permissible. Linkage to the tape copy routine is

IMJ 11, TCOPY$
+ Yy
where X is logical unit designator of the file of input tapes, and
Y is the logical unit designator of the file of output tapes. For

details, see 1107 Programmer Notes 6 and T, obtainable from Mrs.
Pat Barnes, Building 3, Room 125.

4.6.1.2 Tape Print

This utility routine will accept assignments for up to eight input
tapes. Console key-in parameters allow for setting parity, density,
print termination characteristics, and data formation in a manner
analogous to the tape copy utility routine. In addition, up to 99
files may be skipped before printing begins. Also, an identification
field is provided to allow a unique heading on the printer hard copy.

To request TPRNT$, the programmer fills out the job request card
(1107 Instruction Card) indicating to the operator the tape(s) desired.

The request card must be filled out in the following mannner:

29 April 1966 k- L6

On one side of the request card is a large, almost empty space,
labeled "Special Instructions”. In this space, write the char-
acters: PDFTNNSS IDENT

a. Under the PD, write the letter O or E, depending on whether
the input tape is of odd or even parity.

b. Under the F, write one of the digits 1 through 9 to specify the
number of consecutive end-of-files at which the current copy
should terminate, or write a O to mean that TPRINT should ignore
this parameter.

c. Under T, write one of the letters F (Fieldata), B (BCD to FD),
0 (octal), D (decimal), E (exponential floating point), X
(float%ng point to fixed point), or U (user's general format,
if any).

d. Under NN, write one of the numbers Ol through 99 to specify the
number of serial end-of-files at which the current copy should
terminate. 00 or VV means that this field is ignored.

e. Under SS, write one of the numbers Ol through 00 to specify the
number of end-of-file marks to be skipped at the beginning of
the current print.

f. Under IDENT, write any six characters or less, to request any
identifying key-in for the current print. This field is com-
pletely arbitrary and need not be provided.

Since the TPRNT$ routine occupies much of core, it 1is occasionally
necessary for the user to define an overlay structure with the MAP
processor. The tape print routine is written so that the Autoload
of MAP is permissible. The calling sequence is:

LMT 11, TPRNT$
F FORM 18, 12, 6
P IABEL, BIKLIM, LU

where IABEL is the entry point name of the user's own formatting sub-
program or the value ¢ if none is defined; BIKLIM is the integer
value of the number of blocks to print before terminating the current
print job. This count will be nullified for the current file if an
end-of-file mark is read before the designated number of blocks. The
value ¢ (zero) means an indefinite number of blocks is to be read.

LU is any logical unit designation for the input file (such as "A").

For more details on Tape Print, see 1107 Programmer Notes 6, 7, and .
8, obtainable from Mrs. Pat Barnes, Building 3, Room 125.

29 April 1966 byt

h.6.2
k.6.2.1

L.6.2.2

1401 UTILITY PROGRAMS

Univac 1107 Fieldata Code Conversion in IBM/BCD No. 55

The Univac 1107 Fieldata code to IBM Binary Coded Decimal utility
program provides the ability to convert a Univac 1107 Fieldata tape
to IBM Binary Coded Decimal tape equivalent. Field Fieldata-to-BCD
Dump processing of any combination of Fieldata tape-to-printer and
Fleldata tape-to-BCD tape operations.

Programming information on the Fieldata-to-BCD Dump may be obtained
from Mrs. Pat Barnes, Building 3, Room 125, Extension X~-6796. When
submitting runs, simply specify Fieldata Dump on your job request
card.h This program is available in the 1401 machine room in Build-
ing 14.

Any difficulties or discrepancies encountered in the use of this
utility program should be directed to the Programming Methods Sec-
tion, Advanced Projects Branch, Extension 6796.

1401 Program (No. 56) to Interpret and Print 1107, .PR Tapes

The 1401 program to print and interpret 1107 .PR tapes is used in
conjunction with the 1107 control card VS TFR. This has been done
to increase utilization of the 1107, to speed up execution of the
programs processed by that large scale computer, to more efficiently
use the drums, and to exactly position the margins. Additionally,
output may be saved and/or reprinted.

29 April 1966 448

L.7 ASSEMBLY AND EXECUTION FROM TAPE

Programs and subroutines may be assembled and executed from tape
rather than from cards through the use of the Complex Utility Rou-
tine (CUR). (See page 5-15 of the EXEC II Manual, U-3671.)

The program must have been previously been loaded onto tape through
the 1107 or 1108 via CUR. This may be done by a simple OUT instruc-
tion, which will put the entire drum PCF onto the specified tape,

or specific routines may be loaded onto tape by use of the TWR in-
struction. The OUT instruction may be used to specify one or more
of the seven different types of elements. When the programmer has
the desired routines on tape, an end-of-file is put on the tape,
using the TEF instruction.

In execution from tape, it is sufficient to read in the entire file
of the input tape via the CUR instruction, IN. The entire file will
be read into the drum PCF. Any additional routines may then be read
in from cards or another tape. (If two routines are read into the
drum PCF having the same name and version, the last one read in will
delete the previous one. Therefore, if one wishes to substitute a
new routine for one currently on tape, it is only necessary to read
in the new routine after the 0ld one has been loaded into the drum
PCF.) Once the entire PCF has been loaded, an XQT card will allo-
cate the routines needed and enter the desired execution. Several
different main programs may be held on the drum PCF at the same
time, so that several executions may follow one another without
erasure and rewriting of the drum PCF,

More often than not, it is desired to reassemble or recompile a pro-
gram that 1s already loaded onto a program tape. It is not necessary
to delete the program by a new card deck, as indicated above, if the
program is loaded onto the program tape in symbolic form. (Obviously,
one cannot reassemble or recompile a relocatable routine.) It is
only necessary to reassemble from drum with correction cards. To
specify assembly or compilation from drum, the three-letter mnemonic
for the processor should be followed with "#". For example, if we
wish to replace the fourth card of a FORTRAN IV program named TEST,
the following deck will suffice:

vV IWL FOR,* TEST
-l L

GO TO 128

In the above example, we will get a single-spaced listing of the rou-
tine named TEST, with assembly listing; the correction cards will be
listed prior to the listing, and the fourth card will be replaced by .
the FORTRAN instruction GO TO 128. The relocatable element formed

by this assembly will have the version name CODE.

29 April 1966 b-k9g

The programmer may reassemble or recompile as many routines as neces-
sary. The W option is not necessary for assembly with corrections;
it merely lists the correction cards for each reference. The pro=-
grammer should be careful that he has the proper listing for the sym-
bolics from which he is updating--with a large number of updates, it
is easy to forget which routine is on tape (the voice of experience).
He should give the relocatable the same name and version as the pre-
vious relocatable element, unless the previous relocatable is deleted
by the DEL instruction or selection is made by use of flags.

Further information on correction cards is found on page 5-10A of the
EXEC II Manual (U-3671), and information on flags is found on pages
5-5, 5-9, 5-10, 5-19, 5-27, 5-28, 5-30, and 5-31 of the same Manual.

29 April 1966 4-50

CODING SHEETS

A special printed coding form (see Figure 4-11.) is provided for
writing programs in SLEUTH II language. Coding is in free form.

This coding form facilitates both the writing and the keypunching

of programs. These forms are obtainable from Mrs. Pat Barnes, Build-
ing 3, Room 125.

(W03 NWNT0D 06-08}

1t8E-an

LA SN SR S an S e pm T T T T T T T T T T T T LI B LB L B B LANLALENE BL AN B B N B D B S0 A 4
LI B B B B TT T T I T LML R N B B AL I B L A e S e B e e e T LA S A S B A A D NN N B B N S
L B B B B e e T [T i T LU S B S o A T T LRI AL L S B S B L S e T T AN L B B S B
LI L B B B (e B e L T T T T LML A B) U TTUTO T T T T T T T T T LA B S B B B B BN B B Bt
LAND BN S B BN B B e T T TT 7T T Y T T T LA AL L S N S B e e T T L AL B B O B S B B B e
LI D B B I B B TT T T T T T T LANLANL N N A LR L N N A e 4 Ty rrrr o7 LN AL AL B N B B B M B B |
T T T T T T T7 TT T T T T LN B B B LA AL LD L L L B S B B e B T AL AL R AL BN B TN B S e B |
T T T T LI T T 17 T T TT T T LA L A B B B | T T LI B B AL L R B O N B S B B B |
LANIE B S G B BN B | L T T I T LA B B 4 LA A N L B B B B [T L B TT T T T T T I 7 T T T T
T T T T T T T T T T LN B B LA L B B B S B S S Gy B s e ¢ T TT T T T T T T T
LI B DL N I B At s T T T T T LA B S B LN AL A I L A S R B A A B St e ¢ T ANLENE SR I U B B B BN N B G S e ¢
TT T T T ™ T L T T LI S B B e LA L (LI BN B B By e T T LR BN R B B S GO S D B B e B ¢
T T T T 7T T 7T TT T T 1T T T LANLCH R L B Bt B | LA L L A I e B s Bt T LANLENE B S N B S BN S N BN B ¢
T T T T TT T T T T T LML B R B S LANLANL AL L L S B B B B B s S e w1 T LR L I L B B A B B B e
T T VYT T T 71T T T TTT T T LA B B I LA L L A L B B O s e | AR B B B L A B O o o
LN AN N D B B S B S B T T T T T T LA N B S B 4 LN L L B B N Ay B B B s s | T AL B N A S B B N N DO N SN B S g
~ LI FRE S B D M S B T T T T T T LA L B I B LANLELE L L N N i B S e o 4 T LA L B S B B B B e
m
[JTT T T T TT T L T T TT T T T AL L B S S B B s B e Y LASILNL AN B B S I B e S e e
=+ T T T T T T T T T T T T ,_ Lo AL AL N R S B B B S B B S e e e e T LNL A L S B B S I B B B e
T T T T T T L T T T T T T LA N S B B e B T LI S L N N AR B B B B S B S
T T T T T T T T LI LI B S L AL 20 R B N S e e T T T T T T T T T
LR SULEN SN B S B T T T T T T T T LOLEL B S S S LANLENLENL L L A B O S B [S s e e 4 T LANLENL AN N B E B SO B B B B B B
TTT T T T L T T T T T T AL LI S LA L N NN N B e T T LALANL N L A B B BN B B B B S o
LN B B B B B Bt T T 1T I T LA S LLALENL D B S B B B B B e TT 7T T T 1T 7T LANLENL A S B R LA (S B B S B B o
T T T T L T L T T TT T T T LA L L L A B B S B B B B S e s e et e T (LA B B B B B B B S B e
AR B S S B B e T T T T T LLANLE B B 4 LA AL AL AL B S B s e S B T T T LARLANE AN B S B B B S SN0 o
T T T T T T T T T T LI N B B S B LA LA B B S s LI B R N B R B B B B B ¢
T r T T T T T T T T T LA N LA L L S B B S o T TTTT T T T T T T T
T T T T T 7 T T T LANLIL AL S e LRI AL) B B S B (M S S S S e o e SO S S RS T T T T T T T T T T T
LA B B B Mt B S | TT T T T T LA B B I S LA A R B B e S T NS A A T o 4 ANLANEL AN N N E B A BN B B B o e ¢
[08 1
SLNIWWOD v ANY¥3do ; \Y NOILY¥3d0 v q3av
$39Vd ™ 40 T —39vd aiva YIWWY HO0Ud WY H90dd
WY0d ONINWYYES0¥d SETIRNO0 Sve amm—n o e

401 3YNAINN

29 April 1966

HiMN3ns

Aanassv

ASAVYAINN

Assembly in SIEUTH II Programming Form

Figure 4-11.

27 May 1966

Paragraph
5.1

5.2

5.3
5.4

5-1
CONTENTS

CHAPTER 5 AUTOCODER-SPS
SYSTEM DESCRIPTION: o « « o o o o o o o o o o s o o o »
5.1.1 SYSTEM CONFIGURATION « « v o « o o ¢ o o o o «
5.1.2 MACHINE CONFIGURATION. . e e e e e e e e e
5.1.3 SYSTEM TAPE MAINTENANCE. « « « o « = « o o o &
5.1.4 FRROR REPORTING. . « o « « o ¢ o o o o o o o o
DETAILED PROCEDURES o « « o o o « o o o o o o o o o o «
5.2.1 AUTOCODER PROCESSOR-CONTROL OPERATIONS
5.2.2 SPS PROCESSOR-CONTROL OPERATIONS ¢ « & « & « &
BIBLI%RAPHY. . . L] L] L] [] . - L] . L] . » . . - L] » * .
1401 UTILITY ROUTINES ¢ « o o o o o = o o & . e e
S.4.1 FORTRAN PREFROCESSOR « o o o o o « o o o o o @
5.4.2 TWO-TAPE AUTOCODER ASSEMBLY SYSTEM . + o « « « &
5.4.3 MAST (Minneapolis Assembly of SPS Two)
5.4.4 GODDARD MULTIPURPOSE UTILITY PROGRAM
5.4.5 TAPE DUPE (SNOOPY) ¢ v o« « ¢ o o + « o o o o &
5.4.6 PRE-PROCESS LISTING ROUTINE. . « « « ¢ o o o &
5.4.7 1401/1460 COMBINED UTILITY ROUTINE . + « « . .
5'&08 lQuK 1,4‘01 mm’RAMO . . L] L]
5.4,9 1401 CARD-TO-TAPE PROGRAM FOR 7090 IBSYS SYSTEMS
5.4,10 UNIVAC 1107 FIELDATA CODE CONVERSION IN IEM/BCD.
5.4,11 1401 PROGRAM TO INTERPRET AND PRINT 1107,

JFPRTAPES o v ¢ ¢ ¢ ¢ ¢ o o o o s o o o o o o

s e & ® o e ® & s

*« e+ o .

e e s e s o * o s o

5-17
5=-17

5-17

2T May 1966 5-11

CONTENTS (Cont'd)

Paragraph Page
5,4,12 TABLE OF CONTENTS . « « « « & . . . o« . 517
5.4.13 TAPE MODIFICATIONS PROGRAM. . « « &+ « & & o ¢ ¢ o = 5-18
S 1k MYSTIC LIST « o o o o o o o o o o o o o o o o o & o 5-18
5.4,15 IBTD TAPE DUMP ROUTINE. & & « ¢ o o & o o o o o o = 5-18
5.4,16 FORTRAN II LANGUAGE CONVERSION PROGRAM (LcP). . . . 5-18
5.4.17 DOCUMENTATION AIDS SYSTEM . ¢ ¢ o o « o o o o ¢ ¢ 5-19

505 CODING SI{EETS e o e & ¢ e e & 6 & s 6 e ®8 & e 8 e s o e+ o o 5"20

ILLUSTRATIONS
Figure Page
5-1 A'U.tOCOdeI‘ FlOW Diagr&m. ¢ o e @ ¢« o 8 e & s e e o o 5"3
5"2 SPS FlOW Diagram- . . o e s . . e o . . L] . . * 5"’4’
5-3 AutOCOdeI‘ COding Sheeto s e o o » e o e o o o e s o o 5-21
5-4 SPS Coding Sheet. « « « « « « « « . e e s e e e s e s . 5=22
TABLES
Table Page

5-1 Computer Equipment. . « « « ¢ &« o ¢ v ¢« o ¢« ¢ o o o o o o« 5=5
5«2 Autocoder Processor-Control Operations. « « o « o ¢ o o « « 5=T
5-3 SPS Processor-Control Operations. « . « « « o o « ¢ « o o & 5-1

27 May 1966 5-1

5.1

5.1.1

CHAPTER 5

AUTOCODER-SPS

SYSTEM DESCRIPTION

This chapter describes two similar symbolic programming systems,

the Autocoder and the Symbolic Programming System (SPS) for IRM
peripheral equipment. (See Table 5-1.) The symbolic programming
systems facilitate logical, efficient programing, with a minimum
of actual coding effort. The programmer may use symbolic addresses
in place of numerical addresses, use mnemonic operation codes
rather than machine language codes and by use of symbolic language
he can control the locations of record and work areas if he so
chooses,or he can leave this Jjob to the processor program.

SYSTEM CONFIGURATION

The Autocoder language is not directly compatible with SPS, but
the Autocoder translator can translate source programs coded in
either language or in a combination of the two. The Autocoder is
a more powerful machine-oriented language than SPS and the msajor
differences between them is that the Autocoder:

l. Provides macro instructions whereby one instruction in
the source program is translated into many actual machine
instructions. (SPS does not use macros.)

2. Uses literals whereby the Autocoder processor assigns a
location to the constant and fills in the assigned address
in the instruction. (SPS does not use literals.)

2T May 1966 5-2

3. Uses a free-form coding sheet whereby the programmer uses
as much space as required for each operand and separates
the operands by commas if there is more than one. (sps
coding is of the fixed-form type.)

L. Provides library routines. (SPS would require tape units.)

The Autocoder requires at least four magnetic tape units and 4,000
positions of core storage. SPS is usable on cards only. SPS-1 can
assemble programs for any size object machine from 1,400 to 4,000
positions of core storage employing a 1,400-character machine. SPS-2
can assemble programs for any size object machine from 1,400 to 16,000
positions of core storage employing a 4,000-character machine. There
is a strict one-to-one correspondence of SPS statements. The SPS
translator requires 4 card passes (or 5 if a condensed object program
deck is desired). The 1401 Program Library contains several user-
developed revisions of the SPS translator utilizing tape passes, rather
than card passes. Although these programs will effectively speed up
the time required for translation, they do require from one to three
magnetic tape units (depending on the program used) in addition to the
minimum configuation requirements.

There is a 1L0l Input/Output Control System as a supplement to the
Autocoder which handles all of the normal input and output program-
ming considerations with a minimum of programmer effort. It consists
of additional control and macro operations that handle reading and
writing, tape blocking and unblocking, file labeling, and error
checking.

Figure 5-1 shows the Autocoder flow diagram. Filgure 5-2 shows the
SPS flow diagram.

-

>-3

2T May 1966

M23a
a3 TdN3SSY
Q3HO1lvd

weldetq MOTd JI3poo0oiqny

31anW3ssvad

*1-¢ 2an3td

NY¥D0dd IDJNOS

Wva508d M03a
HOLvd 2LNO3IX3 a3 awassvy
7}
x
NEESGEE
s03a S P 030
Q3SNIANOD a - 153rgo
9 ioarso
S
v
zssvd (g | sSsvd AnvaEn Wvunoud | HONNd g L133HS
ATgwassvy A¥vyEIT 3%uN0S A3M ONIGoD
7
ANV 4|
v 3dvl
squvo so3a mmo
ETR un
3dunos SauVo NO

wexderq MOTd SIS °2-6 °.amITd

I1aWISSVIN

o130 Wvyo0oud %230
Q3IN8NISSY | g 151vd 31N23x3 | a31anISSY
g3HoLlvd [V
— ON
| 30unos
iy i 20ud [t 5
QI SNIANOD 1S 5530044 R 9 e
S3IA 1s0d El
9 i53rs0
3
o~ NOILVHILI
b HTHLONV
= ON
1
mn
»o3a %930
103rao 3LVIGIWHILNI
7'y S3A
¥OSS3D0Ud | g ¥Oss3D0Nd | g & WYNO0Nd |g HONNd & 133HS
N 1s1M3yd [@ ¢ ¢
Z ssvd I ssvd 308N0S A3 ONIQoD
7 1NdNI NOLLYN3LlL £ 1NANI LSYI ¥
- 1 3030 sds | ¥D3a sds

27 May 1966

27 May 1966

5.1.2

MACHINE CONFIGURATION

2=>

The programmer using the Goddard Space Flight Center Computer Com-
plex has a vast quantity of data processing equipment at his dis-

posal. The Autocoder-SPS systems operate on several of these com-
puters. A list of this equipment is given in Table 5-1.
Table 5-1. Computer Eguipment
Bldg. Computer Memory Magnetic Card Line
Ioc. Facility Size Tape Units Read/Punch Printer
14 A-IBM-1401 1.4K 1-7330 1403-11
14 B-IBM-1401 8K 2-T330%%* 1ho2-1 1403-1T
14 C-IRM-1401 8K 3-T73306%% 1402-1 1403-11
1k D-IBM-1401 LK 2-7330 1012-1% 1403-I1
1ho2-1
3 E-IBM-1401 4K 2-729-1II 1ho2-1 1403-11
1k F-IBM-1401 8K 2-729-11 1k02-1 1403-1T
21l IRM-1460 8K L-729-VI*%* 1hop-1 1403-IIT
2-T29-IV¥¥¥%
1k I-IBM-TO10%* 100K 8-729-IV***x | 1402-1 1403-IIT
1-T729-VI
1h TBRM-1401 8K 2-T29-IV 1402-I 1403-IT

* Paper tape reader/punch

*% 1301 disk
*¥¥¥% Switchable units
¥%¥% Tywo of these are switchable on the 1401.

27 May 1966 5-6

5.1.3

5.1.4

SYSTEM TAPE MAINTENANCE

The Programming Methods Section (PMS) of the Data Systems Division
has primary responsibility for maintaining the Autocoder master tape.
Tape revisions or updating occur periodically as a result of one or
more of the following conditions: 1) new Autocoder version or sig-
nificant corrections released by IBM; 2) major changes originating
from GSFC programmers; and 3) catastrophic errors requiring the im-
mediate issurance of new tape.

ERROR REPORTING

The PMS has the responsibility of maintaining the Autocoder and SPS
systems. Any questions regarding system utilization and system dis-
crepancies should be directed to PMS personnel. The current method
of reporting system discrepancies verbally is expeditious. However,
it is recommended that the System Discrepancy Report (see Form 1-1,
Chapter 1) be utilized for submittal to the PMS coordinator. In this
way, a current file of all discrepancies will be maintained along
with the corrective actions taken. A copy of the Discrepancy Form
will be availlable in the PMS coordinating office (Room 127, Building
3) and in the dispatcher's office (Building 1, Building 14, and
Building 3). Programmers are required to periodically check the Sys-
tem Status Report (see Form 1-2, Chapter 1) to insure satisfactory
operational performance from the system used.

27 May 1966

5.2

5.2.1

DETAILED PROCEDURES

>=T

This section describes the Autocoder processor-control operations
and the SPS processor-control operations.

AUTOCODER PROCESSOR~-CONTROL OPERATIONS

Autocoder has several control operations that enable the user to
exercise some control over the assembly process. They are developed

here for quick reference.

For details, see the IBM 140l and 1460

Autocoder (on Tape) Language Document, Form C24-3319-0.

Autocoder Processor-Control Operations

Op Code

Purpose

Description

JOB

CTL

ORG

Job Card

Control
Card

Origin

This is the first card in the user's source
program deck., It is used to print a head-
ing line on each page of the output listing
from the assembly process and to identify
the self-loading program deck or tape. It
allows the programmer to identify a job or
parts of a job in the output listing.

The control statement is the second entry
in the source program deck. It is used to
specify size of the processing and object
machine, type of output, and the presence
or absence of the Modify-Address feature.
The MA instruction is standard in the 1460
systems and in 140l systems with 8-, 12-,
and 16-thousand positions of core storage.
For an object machine not equipped with the
MA feature, the Autocoder processor auto-
matically assembles a routine to simulate
the MA instruction, types out the object
program, and indlcates the presence of the
fifth tape and of the Read-Punch Release
Feature.

Used to specify a storage address at which
the processor should begin assigning loca~
tions to instructions, constants, and work
areas. Allows programmer to chose area(s)
of storage where object program will be
located.

27 May 1966

Table 5-2. Autocoder Processor-Control Operations (Cont'd)

Description

Op Code Purpose
LTORG Literal

Origin
EX Execute
XFR Transfer
END End

Coded in same way as ORG statements, the
LTORG statements direct the processor to
assign storage locations to previously
encountered literals and closed library
routines, beginning with the address
written in the operand field of the LTORG
statement. LTORG statements can appear
anywhere in the source program.

Used during the loading of the assembled
machine language program to discontinue the
loading process temporarily to execute a
portion of the program just loaded. Allows
use of several program sections if total
program exceeds the limits of available
storage capacity. If inputs to the program
are on magnetic tape and the program is also
on tape, one tape unit can be assigned to
the program and another can be assigned to
the input data.

Same function as an EX statement except that
literals, closed library routines, and ad-
dress constants are not stored. An XFR
statement transfers to and executes instruc-
tions that have been previously loaded.

As the last card in the source deck, it is
used to signal the processor that all of the
source program entries have been read, and
to provide the processor with the informa-
tion necessary to create a bootstrap card.
This bootstrap card causes a transfer to the
first instruction in the object program
after it has been loaded into the machine at
program load time. Thus, program execution
begins automatically.

2T May 1966

Table 5-2.

Autocoder Processor-Control Operations (Cont'd)

Op Code

Purpose

Description

SFX

ENT

ALTER

Suffix

Enter New
Coding Mode

Alter

Directs the processor to put a suffix code
in the sixth position of all labels in the
symbolic program that have five, or fewer
chapters, until another SFX statement is
encountered. In this way, the programmer
can use the same label in different sections
of the complete program. A suffix state-
ment with a blank operand can be used to
stop the assignment of a suffix code.

Although the 1401 and 1460 Autocoder pro-
cessor accepts source programs coded in
either free-form Autocoder language or in
fixed-form SPS language, it is possible to
assemble a single program coded in a com-
bination of the two languages. With ENT

the processor is informed that a change in
coding form follows. Allows programmer pro-
grams prepared wholly or partially in SPS
format to be reassembled by the processor.

Used to add, delete, or substitute instruc-
tions in the object program after the
original assembly has been completed. By
saving Tape 4, which, at the end of assembly,
contains a source program, it is possible to
reassemble the program easily by processing
ALTER cards. During each assembly, each
statement can be altered by an ALTER entry
if assigned a sequence number. This number
is listed in the first column of the output
listing. These numbers are used in the ALTER
entries to reference statements to be changed
during the reassembly.

27 May 1966

5.2.2

5-10

SPS PROCESSOR-CONTROL OPERATIONS

SPS has several control operations that enable the user to exercise
some control over the assembly process. They are developed here

for quick reference.

Form C24-1480-1.

Table 5-3.

For details see the IBM 1401 SPS document

SPS Processor-Control Operations

Op Code Purpose

Description

CTL Control
ORG Origin
EX Execute
END End

This control card is placed at the beginning
of the source deck, so that the SPS processor
is able to distinguish the storage sizes of
the processing machine and the object machine.

An ORG statement causes the processor's
storage assignment counter to assign ad-
dresses beginning at a particular location
specified by the programmer. If it is
entered as the first card of the source pro-
gram, an ORG card can cause the initial
assignment of addresses to be at a location
other than 333. An ORG statement may be in-
cluded at any desired point in the source
program. This will cause the counter to be
reset and cause all future entries to be
assigned addresses beginning at the particular
location designated by the programmer. Char-
acter adjustment and fixing are not valid in
an ORG statement.

Used during the loading of a machine-language
program to discontinue the loading process tem-
porarily to execute a portion of the program
just loaded. Allows programmer to also divide
his program into several program sections if
his total program exceeds the limit of avail-
able capacity.

Signals the processor that the last card in
the source program has been processed. If the
programmer specified in the (A) operand the
actual or symbolic address at which the object
program is to begin execution, and END state-
ment will produce an instruction that will
start program execution immediately after
loading. If the (A) operand is blank, the
1401 will halt when the last instruction has
been loaded.

5.3

5.3.1

5.3.2

5.3.3

2T May 1966

5-11

BIBLIOGRAPHY

This section provides a list with abstracts of documents on
Autocoder-SPS.

IBM 1401 and 1460 Autocoder (on Tape) Language Specifications
and Operating Procedures
Form C24-3319-0

This publication contains the language specifications and operating
procedures for the Autocoder (on Tape) programming system. The IEM
1401 Autocoder processor can assemble programs for all 14OL and 1460
systems. The language specifications cover two sections: 1) speci-
fications of the symbolic language (mnemonics, labels, address types,
and control operations) and the rules for writing the source program;
and 2) descriptions of macro operations and macro instructions. The
operating instructions describe the procedures to be performed by the
operator when assembling an Autocoder program on an IBM 1401 or 1460
tape system. There is also a description of the phases of the
Autocoder processor as well as an explanation on system halts and
restarts.

IBM 1401 Symbolic Programming Systems
Form C24-1480-0

The reader should have a basic knowledge of 140l machine language
programming in order to understand this manual which provides pro-
grammers with the information necessary to code a 1401 program in

SPS language and assemble a machine-language object program. De=-
scribed are symbolic programming principles and concepts as well as
detailed specifications of the 1401 Symbolic Programming Systems,
SPS-1 and SPS-2. Operating instructions for processing the SPS
source program are expounded upon. For the beginning SPS programmer,
a sample program is included. There are also shown input and out-
put forms, a block diagram of the program procedure, the symbolic
program, and SPS output listings of the symbolic and machine-language
programs.

IBM 1401 Data Processing System Reference Manual
Form A24-3067

This manual presents the physical features of the 140l Data Process-
ing System, enumerates the processing concept, discusses magnetic
tape, presents a description of address modification, and expounds
upon the operating features and timing, as well as providing appen-
dices showing forms, flow charts, operation codes, and other charts.

27 May 1966 5-12

5.3.4 System Operation Reference Manual, IBM 1401 and IBM 1460
Data Processing Systems
Form A2L-3067-1

This manual is the first of five providing the complete instruction
set for the TEM 1401 and 1460. The operation code for each instruc-
tion is provided in actual and mnemonic form, along with examples of
each. The formula for calculating the execution time of each instruc-
tion is also included. A general knowledge of the IBM 1401 or 1460
Data Processsng Systems is assumed.

5.3.5 TBM 1447 Console
Form A24-3031-3

This reference publication describes the specific models of the IBM
1447 Console that can be attached to the 14Ol and 1460 Data Processing
Systems. It presents detailed descriptions of indicator lights, keys,
dials and switches.

5.3.6 Miscellaneous Input/Output Instructions, IBM 140l and IBM 1460
Data Processing Systems
Form A24-3068-0

This publication presents a description of the instructions used
by the 1401 or 1460 to operate miscellaneous input/output units.
Also included is timing information for each unit attached to a
1401 or 1460 Data Processing System.

5.3.7 Tape Input-Output Instructions
IBM 1401, 1440, and 1h60
Form A2L-3069-1

This publication not only contains a description of the instructions
used by the data processing system to operate the tape units attached
to it but also includes timing information on the 729, 7330, and 7335
tape units.

5.3.8 Special Features Instructions, IBM 1401 and IEM 1L60
Data Processing Systems
Form A24-3071-2

This manual describes the special features available for the 1401
and/or 1460 Data Processing Systems. Each feature is described and
identified for the system to which it can be applied. Included are
instructions for the special features on the IBM 1k02, 1403, and
1009 when these units are used with the 1401 or 1460 Data Processing

Units. ‘l'

27 May 1966 5-13

5.3.9

5.3.10

5.3.11

5.3.12

IBM 1402 Card Read-Punch

Form A24-3072-1

This manual describes the 1402 Card Read-Punch as it pertains to
the 1401, 1410, and 1460 data processing systems. It covers the

ma jor mechanical units, their functions and operating controls, and
special features that can be installed to expand the capabilities
of the basic machine.

IBM 1403 Printer
Form A2L-3073

This manual describes the 1403 Printer as it pertains to the 1401,
1410, and 1460 data processing systems.

Input/OCutput Control System (on Tape), Specifications and
Operating Procedures, IBM 1401 and 1460
Form C2L-1462-2

This publication presents the programming required to use the IO0CS
to control the input/output of data from card reader, card punch,
printer, and tape files. There is a detailed description of the
I0CS entries (DIOCS and DTF) and the macro instructions. Of espe-
cially useful to experienced programmers are the sections dealing
with Summaries (briefly lists storage-area considerations, macro
instructions and processing-overlap considerations and Program
Operation (describes IOCS library routines, labels, halts, and
error indications. IOCS is a supplement to Autocoder.

Utility Programs for IBM 1401 Tape System: Preliminary Specifications
Form Joh-1411-1

This bulletin describes the card-to-tape, tape-to-card and tape-to
printer programs for the 140L. This publication is a major revision
and obsoletes the previous bulletins, J24-1411-0 and J29-1411-0.

The listed programs can, within limitations, accommodate magnetic
tapes and card decks prepared on any IBM system.

27 May 1966 5-14

5.3.13

5.3.14

5.3.15

TEM 1410/7010 Operating System (1410-PR-155) System Monitor
Form C28-0319~3

This publication provides programmers and systems analysts on the
use of the System Monitor to control the 1h10/7010 Operating System.
Autocoder is an element of this operating system.

TEM 1410-7010 Operating System (1410-PR-155) Autocoder
Form C28-0326-2

This publication deals with the Autocoder language concerning this
lth/TOlO Operating System. It describes the basic concepts and
functions of Autocoder, as well as types of operand entries and
operation codes, and further presents the macro system.

IBM 1410/7010 Operating System (1410-PR-155), Basic Input/Output
Control System
Form C28-0322-3

This publication presents to 1410 and 7010 programmers the informa-
tion needed to write efficient programs incorporating the Basic
Input/Output Control System. This system can schedule, implement,
and control the transfer of data to and from core storage. It can
also perform functions relating to the transfer of data, such as
error detection and correction.

5.4

5.4.1

5.4.2

5.4.3

2T May 1966 5-15

1401 UTILITY ROUTINES

These routines are used to facilitate program development, system
development, and program and system documentation.

FORTRAN PREPROCESSOR

The FORTRAN Preprocessor is a 140l program that is used to scan a
FORTRAN source program for errors. This helps the programmer to
eliminate those errors prior to the program being submitted to the
7094 for compilation.

The object deck (L2010000-12010340) is used on the 1401 to write the
FORTRAN PREPROCESSOR on the Library Tape 1. To write this tape,
READY Tape 1, place the FORTRAN Preprocessor deck in the card reader
and press the LOAD button. When the reader stops for the last card,
press START. To preprocess, place the FORTRAN source deck(s) in

the card reader, mount a blank tape on Unit 2, and the FORTRAN
Preprocessor tape on Unit 1. Tape 1 must be positioned ready to
read Record 1 before pressing or simulating the LOADTAPE button.

The complete program writeup and listing is available in the Program-
ming Methods Section.

TWO-TAPE AUTOCODER ASSEMBLY SYSTEM

The Two-Tape Autocoder Assembly System is used for the purpose of
bringing to the user of a smaller 1401 system the benefits of the
Autocoder Programming Language. It is designed to meet as many of
the specifications of the regular Autocoder system as is possible
within the limitations imposed by the availability of only two tape
units.

The complete program writeup and listing is &vailable in the Program-
ming Methods Section.

MAST (Minneapolis Assembly of SPS Two)

The MAST program is a modification of the 1401 SPS II Assembly
Program to use magnetic tape to store the partly assembled output of
PASS 1 rather than on punched cards.

The complete program writeup and listing is available in the Program-
ming Methods Section.

27 May 1966 5-16

5.h.4

5.4.5

5.4.6

GODDARD MULTIPURPOSE UTILITY PROGRAM

The Goddard Multipurpose Utility Program is designed to enable
Goddard Space Flight Center to perform present day TO90 peripheral
tape-to-printer, card-to-tape, and tape~to-card processing in any
combination of operations on the 1401 computer. The functions to

be performed are specified only by the use of sense switches, located
on the 1401 console; no control cards are necessary.

The complete program writeup and listing is available in the Program-
ming Methods Section.

TAPE DUPE (SNOOPY)

This program is used to duplicate tapes written in BCD and/or

binary mode. It reads tape from Tape Unit 1 and copies onto the

tape on Tape Unit 2. The program will dupe any length record up

to a maximum of 6689 characters. A check is made for minimum record
length of three 7094 words. Ten tries are made at reading a record
before the program halts. If the record is ignored (dropped) a line
i